

Surface Water Drainage and Foul Drainage Technical Note

Prepared for: Aitco Ltd

August 2020

Our reference: 89594-Ecotecture-OldLoomMill v1.1 180820 Location: Old Loom Mill Earsham Road Halisham BN27 2RH

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, West Sussex, RH11 0PR +44 (0) 1293 214 444 enquiries@unda.co.uk

Location:	Old Loom Mill, Earsham	Old Loom Mill, Earsham Road, Halisham BN27 2RH				
Application:	Demolition of existing bu	uildings in B1/	B8 usage and café, followed l	by erection of 24	no. family houses	
Prepared for:	Aitco Ltd	Aitco Ltd				
Title:	Surface Water Drainage and Foul Drainage Technical Note					
Project No.:	89594	Date:	18 th August 2020	Issue No.:	1.1	
Written By:	T. Smith BSc (Hons) P. Gander A. Rousou BSc (Hons)	Checked By:	E. Bouet, BSc (Hons) E. Jeffery, MSc (Hons)	Authorised By:	E. Bouet, BSc (Hons)	

Document Issue Record

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the commissioning party and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. Any data and information provided by third parties and referred to herein has not been checked or verified by us unless otherwise expressly stated within this report. This report was checked and approved on the date it was issued and is therefore valid on this date. Understanding, circumstances, regulations and professional standards do change, which could subsequently affect the validity of this report. This report is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Commercial in Confidence

1. Introduction

- 1.1. This Surface Water and Foul Drainage Technical Note has been prepared by Unda Consulting Limited on behalf of Aitco Ltd, to address pre-commencement Conditions 9, 10, 11 and 12.
- 1.2. The associated planning application relates to *Demolition of existing buildings in B1/B8 usage and café, followed by erection of 24 no. family houses.* These works are proposed to be undertaken at Old Loom Mill, Earsham Road, Halisham BN27 2RH.
- 1.3. Post development the total roof area of the twenty four new residential dwellings and two car ports will amount to approximately 2240m².
- 1.4. This report assesses the surface water and foul drainage arrangements for the proposed development, which forms Conditions 9, 10, 11 and 12. Conditions 9, 10, 11 and 12 state the following:

Condition 9

No development approved by this permission shall be commenced until full details of the proposed means of foul drainage disposal have been submitted to and approved in writing by the Local Planning Authority. The approved drainage works shall be completed prior to the completion or occupation of any dwelling on site, whichever is the sooner. DF01

Reason:

In order to secure a satisfactory standard of development, having regard to SPO12, SPO13 and WCS14 to the Wealden Core Strategy Local Plan 2013 and Saved Policy CS2 of the adopted Wealden Local Plan 1998, coupled with the requirements of paragraph 109 of the National Planning Policy Framework 2012.

Condition 10:

No development shall take place until details of surface water drainage, which shall follow the principles of sustainable drainage as far as practicable, including details of treatment of surface water prior to its outfall, have been submitted to and approved by the Local Planning Authority. The drainage shall be provided in accordance with the approved details before first occupation of the related dwelling. DS02

Reason:

To prevent an increased risk of flooding, having regard to Saved Policy CS2 of the adopted Wealden Local Plan, coupled with the requirements of paragraph 103 of the National Planning Policy Framework 2012 and the Wealden Design Guide, Chapter 4, Sections 8 and 9.

Condition 11

Details for the long term maintenance arrangements for any parts of the drainage system which will not be adopted (including ponds, ditches, swales, permeable paving, land drains) to be submitted and approved in writing by the Local Planning Authority prior to the first occupation of any of the dwellings hereby permitted. The submitted details should specify the responsibilities of each party for the implementation of the SUDS scheme, a timetable for implementation, provide a management plan and maintenance plan for the lifetime of the development which should include arrangements for adoption by any public authority or statutory undertaker and any other arrangement to secure then operation of the scheme throughout its life time. The management and maintenance arrangements shall be carried out in accordance with the approved details over the period specified. DS05 (M)

Reason:

To ensure the satisfactory maintenance of unadopted drainage systems in accordance with Saved Policy CS2 of the adopted Wealden Local Plan, coupled with the requirements of paragraph 103 of the National Planning Policy Framework 2012 and the Wealden Design Guide, Chapter 4, Sections 8 and 9.

Condition 12:

There shall be no discharge of foul or contaminated drainage from the site into either the groundwater or any surface waters, whether direct or via soakaways. Prior to being discharged into any watercourse, surface water sewer or soakaways system, all surface water drainage from parking areas and hardstandings shall be passed through trapped gullies and silt traps to BS 5911:1982 with an overall capacity compatible with the site being drained and shall be retained thereafter.

Reason:

To prevent pollution of the water environment in accordance with Saved Policy CS2 of the adopted Wealden Local Plan, coupled with the requirements of paragraph 109 of the National Planning Policy Framework 2012 and the Wealden Design Guide, Chapter 4, Sections 8 and 9.

1.5. This Technical Note provides the information required to address the surface water and foul drainage elements of planning Conditions 9, 10, 11 and 12.

Commercial in Confidence

2. Existing Site:

- 2.1. The site is occupied by a former mill and is approximately 14631m² in size. The site is comprised of a number of buildings and is currently utilised by a collection of craft shops and stalls including a tea room. The existing buildings are predominantly located in the centre west and north of the site with vacant land to the south. According to plans provided by the client, the main area of the site is accessed via a two-way tarmacked road off the B2104 adjacent east. Google imagery indicates that the proposed development area, in the west of the site, is already largely underlain by hardstanding.
- 2.2. According to available information the site is currently underlain by approximately 5483m² of hardstanding comprising 2342m² of built footprint and 3141m² of concrete. As such, the existing site is considered to be formed of approximately 37% impermeable surfaces.
- 2.3. The site is located approximately 1.1km south of Hailsham, a civil parish and the administrative centre of the Wealden District of East Sussex. The application area is bound to the south by agricultural land with a residential dwelling adjacent north. According to aerial imagery the site is located adjacent east of the Cuckoo Trail and approximately 2.46km north of Polegate train station.

Figure 1: Site Location (Source: Ecotecture)

Commercial in Confidence

Figure 2: Aerial Imagery (Source: Google)

Site Topography:

- 2.4. A measured topographical survey has been undertaken at the site and provided by the client for inclusion within the report. This indicates that levels on site range between 4.71mAOD in the north and 10.79mAOD in the south west.
- 2.5. According to spot height levels, the site appears to generally slope from land in the south towards the northern periphery.
- 2.6. Based on the plans provided, the twenty four residential dwellings are proposed to be development upon land with an approximate elevation of between 4.82mAOD and 8.54mAOD.

Commercial in Confidence

Existing Ground Conditions:

- 2.7. The 1:50,000 BGS map shows the site to be located directly upon the bedrock of Weald Clay Formation Mudstone. This strata is reported to have been formed during between the Hauterivian Age and Barremian Age.
- 2.8. BGS mapping indicates that the site is not underlain by superficial deposits.
- 2.9. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Deep Claystone/Mudstone with a soil texture of Clay to Clayey Loam.
- 2.10. Despite being reportedly underlain by Weald Clay Formation infiltration testing has been undertaken at the site.
- 2.11. An intrusive site investigation was undertaken by Southern Testing in June 2020 and a factual soakage test report issued on 8th July 2020. Given the size of the site, a total of four trial pits were excavated throughout the proposed development area to varying depths of between 2.8m and 3.0mbgl (refer to TP1 TP4 on location plan in soakage report appendix).

Figure 3: Photographs of Infiltration Testing Trial Pits 1 and 2 (Source: Southern Testing Ltd)

Figure 4: Photographs of Infiltration Testing Trial Pits 3 and 4 (Source: Southern Testing Ltd)

Commercial in Confidence

- 2.12. According to Southern Testing Ltd, the underlying strata generally comprised Topsoil (0.3-0.4m) over stiff to very stiff, silty/plastic clay, with occasional ironstone gravel.
- 2.13. A summary of the infiltration test results have been provided by Southern Testing (refer below).

Test ID	Test Depth	Design Infiltration Rate		Notes
	(bgl)	ℓ/m²/minute	m/sec	
TP1	0.94-3.00m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 286 mins
TP2	0.97-2.90m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 310 mins
TP3	0.98-3.00m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 248 mins
TP4	0.98-2.80m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 219 mins

Figure 5: Infiltration Test Results (Source: Southern Testing)

- 2.14. Test results provided by Southern Testing Ltd indicate that all four Trial Pits failed to drain thus failed to complete the necessary drop in level (25% full) to calculate a compliant value.
- 2.15. There are no borehole logs in vicinity to the site.
- 2.16. The published Environment Agency Groundwater Vulnerability map shows the site is not located within an area classified as a Groundwater Source Protection Zone.

Figure 6: BGS Bedrock Geology (Source: BGS)

Commercial in Confidence

Figure 7: Soil Map (Source: UK Soils, BGS)

Nearby Watercourses / Drainage Features:

- 2.17. There are no existing watercourses or rivers at the site or along the application boundary.
- 2.18. According to information provided by the client the nearest watercourse to the site is an unnamed open channel some 35m north. It is reported that current building operations discharge into this watercourse via an existing piped service connection.
- 2.19. The aforementioned drainage channel appears to flow in an easterly direction towards the Pevensey Level National Nature Reserve.
- 2.20. Pevensey Levels is a 3603 hectare biologically important area designated a Site of Special Scientific Interest for its rich aquatic flora and fauna.

Commercial in Confidence

Unda Consulting Limited, Southpoint, Old Brighton Road, Gatwick, RH11 0PR. +44 (0) 1293 214 444. info@unda.co.uk

UNDA

Existing Drainage:

2.21. The client has provided information which indicates that surface water runoff from the existing mill buildings is discharged into a watercourse some 35m north via a private surface water connection. This open channel reportedly conveys water in an easterly direction, through a culvert under Ersham Road and towards Saltmarsh Sewer.

Figure 8: Existing Drainage Arrangement (Source: Ambiental)

- 2.22. A second discharge point has been identified some 90m south east of the site. Water is reported to flow through a 150mm diameter sewer, beneath Ersham Road, before being pumped up to Marland Sewer.
- 2.23. Asset records have also been obtained from Thames Water Ltd. These indicate the presence of only one public sewer within vicinity to the site.
- 2.24. According to the records provided, a public rising main sewer flows beneath the Cuckoo Trail adjacent west of the site.
- 2.25. Thames Water have confirmed, in consultation letter PLAN-018980, that the rising main is not suitable for connection of foul (gravity) sewers. As such an alternative means of surface water and foul discharge will need to be established.

Commercial in Confidence

Figure 9: Asset Location Search (Source: Southern Water Ltd)

2.26. Given the site's current use, and the information provided by the client and Southern Water Ltd, surface water generated within the existing site boundary is likely to currently discharge at an uncontrolled rate via overland/subsurface flow into the drainage channels to the north and south east.

Commercial in Confidence

3. Development Proposals:

Proposed Development:

- 3.1. The proposed planning application is for redevelopment of the site with construction of twenty four new residential dwellings, with associated access road and parking. Post development the total roof area of the new residential dwellings and carports will cover approximately 2240m².
- 3.2. However, it is worth noting that the proposed plans include demolition of a number of existing buildings and incorporation of some of the existing hardstanding within the residential housing scheme, amounting to approximately 4110m².
- 3.3. Despite this, attenuation sizing within the strategy has been based on all newly introduced impermeable surfacing (6441m²), comprising both post development roof area and hardstanding. Thus significant betterment will be provided post development.

Figure 10: Proposed Site Layout Plan (Source: Ecotecture)

Commercial in Confidence

4. Surface Water Drainage Strategy:

4.1. In order to mitigate flood risk posed by post development runoff, adequate control measures will need to be considered within the site. This will ensure that surface water runoff is dealt with at source and flood risk is not increased elsewhere.

Drainage Hierarchy:

- 4.2. The drainage strategy for the site has been prepared according to the drainage discharge hierarchy from CIRIA C753 The Suds Manual, as follows:
 - Infiltration to the maximum extent that is practical;
 - Discharge to surface waters;
 - Discharge to surface water sewer.

Infiltration Potential:

Refer to appendix for site investigation.

- 4.3. The 1:50,000 BGS map shows the site to be located directly upon the bedrock of Weald Clay Formation Mudstone. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Deep Claystone/Mudstone with a soil texture of Clay to Clayey Loam.
- 4.4. Despite being reportedly underlain by Weald Clay Formation infiltration testing has been undertaken at the site.
- 4.5. An intrusive site investigation was undertaken by Southern Testing in June 2020 and a factual soakage test report issued on 8th July 2020. Given the size of the site, a total of four trial pits were excavated throughout the proposed development area to varying depths of between 2.8m and 3.0mbgl (refer to TP1 TP4 on location plan in soakage report appendix).
- 4.6. Typically, a minimum soakage rate of 0.1 l/m²/min is required for conventional soakaways to meet the BRE365 requirement of a soakaway half empty time of less than 24 hours. Results from all four pits failed to meet this value, and the tests did not complete the necessary drop in level (25% full) to calculate a compliant value.
- 4.7. Given the results from in-situ infiltration testing in June 2020, the site is not considered suitable for infiltration drainage, and an attenuation based drainage strategy is proposed.

Discharge Location:

- 4.8. There are no open watercourses at the site, or along the red outline boundary.
- 4.9. Based upon information provided by the client, surface water generated within the existing site boundary is likely to currently discharge at an uncontrolled rate via overland/subsurface flow into either the drainage channel in the north or to the south east.
- 4.10. Having reviewed both pre-existing discharge options, whilst the preferred discharge location in the original drainage strategy was to the south east, given the site's natural gradient is considered most appropriate to utilise the existing piped connection in the north.
- 4.11. Utilising the northern connection for post development runoff also corresponds with East Sussex County Council's consultation comments, dated 13th October 2017, which state:

Our preference is for the northern outfall to be used as this involves a short section of sewer and then discharges directly to the watercourse, unless the eastern outfall is proven to have significant benefits. We would request that each of the outfalls is investigated and the most appropriate outfall selected prior to the layout being fixed through any Reserved Matters application. This will also depend on the topography of the site.

Proposed Discharge Rate:

- 4.12. Existing greenfield runoff rates for the site have been calculated as 6.4 l/s for the 1:1 annual runoff event, 17.0 l/s for the 1:30 year event and 24.0 l/s for the 1:100 year event. Refer to calculations in appendix.
- 4.13. However, the existing site is brownfield and covered by approximately 5483m² of impermeable surfacing, comprising the existing built footprint and hardstanding. The existing site is therefore approximately 37% impermeable surfaces. Runoff rates for the

Commercial in Confidence

existing site (including the 37% impermeable coverage) have been calculated using MicroDrainage as 10.8 l/s for the 1:1 annual runoff event, 24.9 l/s for the 1:30 year event and 31.3 l/s for the 1:100 year event. Refer to calculations in appendix.

- 4.14. Runoff from proposed roof areas and hardstanding will be managed via a number of separate SuDS systems. However, from all SuDS features surface water flows will be directed in a controlled manner towards the north of the site. From here, water will be gradually discharged, via the existing piped connection, to the open watercourse some 35m north of the red outline boundary.
- 4.15. Outflow from the proposed SuDS systems will be managed via a number of separate hydrobrake flow controls. The cumulative rate of discharge from all drainage systems to open watercourse will be limited to the agreed rate as stipulated within East Sussex County Council consultation response WD/2017/0839/MAO, dated 13th October 2017.
- 4.16. East Sussex County Council consultation response WD/2017/0839/MAO, dated 13th October 2017 states *surface water runoff from the proposed development should be limited to the 3.2 l/s, for all rainfall events, including those with a 1 in 100 (plus climate change) annual probability of occurrence.*
- In light of this, it is proposed to discharge post development runoff to watercourse at a maximum rate of 3.2l/s. It should be noted that the site is currently underlain by approximately 37% hardstanding and that the 1 in 1 year greenfield runoff rate is 6.4 l/s. Therefore by limiting post development runoff to 3.2l/s significant betterment will be provided when compared to the existing situation.

Proposed SuDS:

- 4.18. The client has confirmed that they would like to incorporate rain gardens and a pond within the proposed scheme. In order to provide sufficient storage to accommodate all post development runoff during the 1 in 100 year plus climate change event a number of separate SuDS features are proposed within the project.
- 4.19. Below is a summary of the proposed mechanisms of surface water drainage at the site for each element of the scheme.

Element	Raingarden	Pond	Tanked Permeable Paving	Attenuation Storage Tank
Road, Paving and Parking				
Roof Area: Plots 1 – 4				
Roof Area: Plots 5 - 6				
Roof Area: Plots 7 – 8				
Roof Area: Plot 9				
Roof Area: Plots 10 – 24				
Car Ports				

Tanked Permeable Paving:

- 4.20. Part of the proposed access road will be surfaced in tanked permeable paving amounting to 2342m². Runoff from this area will percolate through the paving and be stored within a gravel sub-base. Check dams will be utilised within the sub-base where the topography is on a gradient, so as to maximise storage potential.
- 4.21. All water within the tanked permeable paving sub-base will be gradually discharged to the watercourse some 35m north of the site via outflow device.
- 4.22. Surface water runoff from the remaining impermeable element of the access road (479m²), proposed paving (1380m²) and the roof areas of plots 7 and 8 (241m²), will also be directed to the area of tanked permeable paving.
- 4.23. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance needs to be added to the roof area of plots 7 and 8 to take into account future urban creep. Applying a 10% allowance to the roof areas of plots 7 and 8 (241m²) gives a value of 265.1m².
- 4.24. In light of this all drainage calculations for sizing the tanked permeable paving have been made on the basis of a total impermeable area of 4466.1m² (2821m² of access road, 1380m² of paving and 265.1m² of roof area).
- 4.25. Outflow from the proposed drainage system (tanked permeable paving) to the drainage ditch will be limited to 2.1 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.

Commercial in Confidence

- 4.26. Preliminary calculations indicate that tanked permeable pavement with dimensions of 2342m² x 0.5m deep x 0.3 (voids) will be sufficient to accommodate all runoff from 4201m² of impermeable surfacing and 265.1m² of roof area arising from the critical 1:100 year + 40% Climate Change event.
- 4.27. Preliminary calculations indicate that some 342.0m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% Climate Change event.
- 4.28. Refer to enclosed calculations and Plan 89594-01 [*Proposed Drainage Layout*].
- 4.29. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.

Raingardens (Bioretention):

- 4.30. According to landscape plans, several areas have been made available for the incorporation of above ground SuDS.
- 4.31. It is proposed to utilise two of these designated areas to install raingardens. Raingardens offer a form of attenuation storage whilst providing biodiversity and amenity benefits. According to CIRIA SuDS Manual raingardens also provide a very effective treatment functionality through the removal of sediments and pollutants by filtration through the vegetation and underlying filter mediums.
- 4.32. Two rain gardens will be constructed, one in the south western corner of the site and one in the west, to accept roof runoff from plots 1 to 4 and plot 9, respectively.
- 4.33. Given that both raingardens are to be designed to accept roof runoff a 10% allowance needs to be added to comply with CIRIA C753: future urban creep. Applying a 10% allowance to the roof areas of plots 1 to 4 and plot 9 (341m² and 148m²) gives values of 375.1m² and 162.8m², respectively.
- 4.34. Based upon plans provided, the rain garden in the south western corner will have a surface area of 129m² and will be of sufficient size to accommodate surface water runoff from the roof areas (including urban creep allowance) of plots 1 to 4 during the 1 in 100 year plus (40%) climate change event.
- 4.35. The second rain garden, in the west, will reportedly cover an area of 38m². Whilst this rain garden is proposed to have a shallower sub-base and freeboard, it has also been designed to be of sufficient size to accommodate all runoff from roof areas associated with plot 9 for the 1 in 100 year plus (40%) climate change event.
- 4.36. Stones and gravel will be laid at the inlet of both rain gardens to dissipate the energy of entering water and prevent heavy flows from washing soils away.
- 4.37. In accordance to best practise guidance rain gardens should be located:
 - In full sun or partial shade;
 - Within a natural topographic low point in relation to the surrounding area;
 - At least 3m (10ft) away from the house, to avoid any damage to foundations by infiltrating water;
 - In a well-drained area, on a very gentle incline (10% or less);
 - Where it is practical to install a pipe leading to the main drainage system below the rain garden in case of excessively heavy storms.
- 4.38. In order to provide the maximum amount of storage possible, whilst achieving gravity connection to the proposed pond, the rain gardens will be constructed as flows:

Raingarden 1 (129m²): Serving plots 1 to 4

- Freeboard of 300mm,
- Topsoil (ratio 50% sand, 30% topsoil and 20% compost) of 300mm
- Sub-base of 500mm.

Raingarden 2 (38m²): Serving plot 9

- Freeboard of 200mm,
- Topsoil (ratio 50% sand, 30% topsoil and 20% compost) of 300mm
- Sub-base of 300mm.
- 4.39. An under-drain will be installed within the sub-base of the rain gardens to ensure both drain effectively and prevent waterlogging.

Commercial in Confidence

- 4.40. An 18mm diameter orifice will be installed to control discharge from rain garden 1, serving plots 1 to 4, and reduce flows to less 0.5 litres/second.
- 4.41. A 21mm diameter orifice will be installed to control discharge from rain garden 2, serving plot 9, and reduce flows to less 0.5 litres/second.
- 4.42. From both rain gardens, water will be discharged at a controlled rate into the pond (refer to the following section).
- 4.43. Refer to report appendix for suggested planting and raingarden schematics.

Pond (Attenuation Basin):

- 4.44. Runoff from the proposed roof areas associated with plots 1 to 6, plot 9 and the two car ports will be directed into an attenuation basin Sustainable Urban Drainage System (SUDS) situated in the centre south of the site. The main purpose of the pond will be to attenuate surface water runoff from the southerly most roof areas; however it will also provide ecological and aesthetic benefits.
- 4.45. Roof runoff from plots 5 and 6 (241m²) and the two car ports (202m²) will be connected directly to an attenuation basin located to in the centre south of the development.
- 4.46. Given that plots 5 and 6 are residential, an urban creep allowance needs to be applied. Plots 5 and 6 comprise some 241m² of potentially impermeable surfacing. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will be added to take into account future urban creep. Therefore, drainage calculations have been made on the basis of a total contributing impermeable area for plots 5 and 6 of 265.1m².
- 4.47. Runoff from plots 1 to 4 and 9 will be directed towards respective rain gardens prior to discharge to the attenuation basin. Discharge from each of the rain gardens into the pond will be limited to a maximum of 0.5 l/s. Refer to preceding section for information on the proposed raingardens.
- 4.48. Outflow from the attenuation basin to the drainage ditch will be limited to 0.5 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.
- 4.49. Preliminary calculations indicate that an attenuation basin with dimensions of $264.2m^2 \times 1.5m$ deep will be sufficient to accommodate all runoff from $1005m^2$ of impermeable surfacing arising from the critical 1:100 year + 40% Climate Change event.
- 4.50. The pond will provide an attenuation volume of 51.7m³ for surface water runoff from the development. The maximum attenuated water depth within the pond will be 0.403m.
- 4.51. The basin will retain a permanent water level at a depth of 0.5m; this can be utilised to provide biodiversity enhancement as part of the development and contribute towards the general amenity value of the scheme. All attenuation required for management of runoff from the catchment draining to the pond will be located above the permanent water volume but below the required 0.5m freeboard.
- 4.52. The basin design includes 0.597m of freeboard, above the maximum water level. This will mitigate residual flood risk from blockage or exceedance storm events.
- 4.53. Refer to enclosed calculations and Plan 89594-01 [*Proposed Drainage Layout*].
- 4.54. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.

Attenuation Storage:

- 4.55. Surface water runoff from roof areas associated with plots 10 to 24 will be directed to and stored within an attenuation storage tank.
- 4.56. According to plans made available by the client the total roof area associated with plots 10 to 24 amounts to some 1066m² of potentially impermeable surfacing.

Commercial in Confidence

- 4.57. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will need to be added to the roof areas to account future urban creep in this area. Applying a 10% allowance to the roof areas (1066m²) gives a value of 1172.6m². In light of this, all drainage calculations for the attenuation storage tank have been made on the basis of an impermeable coverage of 1172.6m².
- 4.58. From the attenuation storage tank, runoff will be gradually discharged to the drainage ditch some 35m north of the site, via the existing surface water infrastructure.
- 4.59. Outflow from the attenuation tank to the drainage ditch will be limited to a maximum of 0.6 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.
- 4.60. Preliminary calculations indicate that sufficient storage required to attenuate runoff from the proposed impermeable areas (1172.6m²) associated with plots 10 to 24, arising from the critical 1:100 year + 40% climate change event, can be provided within an attenuation storage tank of dimensions 120.0m² x 1.0m deep.
- 4.61. Preliminary calculations indicated that some 92.5m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% climate change event.
- 4.62. All preliminary surface water drainage calculations have been undertaken using MicroDrainage software. Refer to the appendix.

Water Quality:

4.63. Water quality has been assessed in line with the Simple Index approach from Chapter 26 of CIRIA C753 The SuDS Manual:

Step 1 – Allocate suitable pollution hazard indices for the proposed land use. Step 2 – Select SuDS with a total pollution mitigation index that equals or exceeds the pollution hazard index.

4.64. The highest pollution hazard level for the proposed land use is Low (residential car parks and low trafficked roads). The pollution hazard indices for this land use are shown in Table 1 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.5	0.4	0.4

Table 1: Pollution Hazard Indices for the proposed site (from Table 26.2 of CIRIA C753 The SuDS Manual)

4.65. All SuDS components are assessed for their effectiveness in pollutant removal prior to discharge to sewer in Table 26.3 in CIRIA C753 The SuDS Manual. The pollution mitigation indices for attenuation basins are show in Table 2 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.25	0.25	0.3

Table 2: Pollution Mitigation Indices for permeable pavements (from Table 26.3 of CIRIA C753 The SuDS Manual)

- 4.66. The Pollution Mitigation Indices for permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, permeable pavements will provide sufficient water quality treatment prior to discharge to ground.
- 4.67. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.
- 4.68. In addition to the water quality improvements stated in the previous sections, there will be an oil interceptor located upstream of the outfall to the watercourse. This will further reduce the pollution before the water leaves the site to form a two-stage filtration system.

Commercial in Confidence

Design Exceedance:

4.69. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.

Adoption and Maintenance:

- 4.70. It is proposed that all SuDS facilities, including the Hydro-Brake flow control device, will be maintained privately by the end user.
- 4.71. A draft Maintenance Schedule is outlined in the Table below.

Tanked Permeable Paving

- 4.72. Permeable surfaces need to be regularly cleaned of silt and other sediments to preserve their infiltration capability. A brush and suction cleaner, which can be a lorry-mounted device or a smaller precinct sweeper, should be used and the sweeping regime should be as follows:
 - 1. End of winter (April) to collect winter debris.
 - 2. Mid-summer (July/August) to collect dust, flower and grass-type deposits.
 - 3. After autumn leaf fall (November).
- 4.73. If reconstruction is necessary, the following procedure should be followed:
 - 1. Lift surface layer and laying course.
 - 2. Remove any geotextile filter layer.
 - 3. Inspect sub-base and remove, wash and replace if required.
 - 4. Renew any geotextile layer.
 - 5. Renew laying course, jointing material and concrete block paving.
- 4.74. Materials removed from the voids or the layers below the surface of the paving may contain hazardous substances such as heavy metals and hydrocarbons which may need to be disposed of as controlled waste.

Cellular Storage:

- 4.75. It is not envisaged that silt build up within the cellular crate systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits and inspection chambers on a regular basis. Notwithstanding this, a suitable maintenance regime for the systems will comprise of routine inspection and silt removal (as necessary). Inspection should be undertaken using CCTV equipment offered up the inspection tunnels located within the crate system. Camera access can be gained via inspection chambers and inlet pipework located at each end of the tunnels.
- 4.76. Silt removal can be achieved by jetting the inspection tunnels. Jetting should be undertaken in accordance with current jetting guidelines, in particular the Code of Practice for Sewer Jetting published by The Water Research Centre. Jetting at 150bar at 300l/min should be more than adequate in removing any build-up of material within the tunnel. The crate system will take higher pressures. However, unlike regular jetting which relies heavily on high pressure to remove hardened deposits on the inner bore of pipes, effective cleansing of a crate system relies more on the delivery flow rate to flush solids back through the system.
- 4.77. A standard jet head with rear facing nozzles should be used. The head should be fed to the far end of the crate tunnel via the nearest inspection chamber, activated and retracted. As the nozzle is removed, debris will be swept back into the inspection chamber where it can then be removed with the use of a standard gully sucker. This method will ensure the effective removal of gross solids (carrier bags, cans, leaf litter etc.) from the system. Whilst 100% removal cannot be guaranteed, it has been shown that this jetting method will also remove an element of finer material which would otherwise be 'lost' within the system.

Proposed Surface Water Drainage Pipework and Catchpits

4.78. It is not envisaged that silt build up within the pipework systems will require a rigorous maintenance regime so long as silt is removed from upstream catch pits on a regular basis. A suitable maintenance regime for the systems will comprise of routine inspection (every six months) and silt removal (as necessary).

Flow Controls

4.79. Hydro-Brakes or other flow control devices should be inspected for blockages every 6 months, and debris removed as necessary.

Commercial in Confidence

Drainage Element	Maintenance Requirement	Frequency
Gutters & downpipes	 Inspect and remove silt/ debris 	 To be inspected every three months and silt/ debris removed as necessary.
Inspection Chambers and Catch Pits and Flow Controls	 Inspect and remove silt 	 To be inspected every three months and silt/ debris removed as necessary. Flow control to be checked for blockages.
Tanked Permeable Paving	 Sweeping/vacuuming to remove build- up of silt or other sediments 	 Three times a year or as necessary
	 Removal of weeds Replacement of cracked paving blocks Remedial work to cracks and depressions 	 As required
Cellular Storage	 Inspect and remove debris 	 CCTCV inspection following first storm event. Monthly CCTV inspections for first 3 months. 6 monthly CCTV inspections thereafter. Jetting to remove silt as necessary.

 Table 3: Suggested Maintenance Regime for Elements of the Drainage Infrastructure

Note: In addition to the above maintenance requirements, it is recommended that all drainage elements are inspected:

- Following the first storm event;
- Monthly for the first 3 months following commissioning.

Commercial in Confidence

Raingardens (Bioretention):

- 4.80. Two raingardens are proposed at the site, post development.
- 4.81. Dalrymple (2013) concluded that bioretention systems will typically require approximately 2.5 times more maintenance than typical landscape designs. The two on-site bioretention systems will require regular maintenance to ensure continuing operation to design performance standards.
- 4.82. The main cause of failure of bioretention systems is clogging of the surface, which is easily visible. Underdrains and drainage layers are beneath the ground, and malfunctioning is not so easy to detect therefore could potentially be ignored. However, the results of any malfunctioning are likely to cause surface ponding. The clogging of the surface or drainage layers can cause poor outflow water quality due to water bypassing the filter medium to the overflow more frequently than allowed for. During the first few months after installation, the two systems should be visually inspected by the Estates Department after rainfall events, and the amount of deposition measured, to give the groundsmen an idea of the expected rate of sediment deposition. After this initial period, systems should be inspected each quarter, to verify the appropriate level of maintenance.

Maintenance Schedule	Required Action	Frequency
	Inspection of the infiltration surfaces of both raingardens for silting and ponding. Record de- watering time of each raingarden and assess the standing water levels in the underdrain to determine whether maintenance is necessary.	Quarterly.
Regular Inspection	Check operation of underdrains by inspection of flows after a rainfall event.	Annually.
	Assess vegetation for disease infection, poor growth, and invasive species. Replace where necessary.	Quarterly.
	Inspect inlets and outlets for blockage.	Quarterly.
	Remove litter, debris and weeds from the surface of the bioretention units.	Quarterly. Can be undertaken more frequently if littering of the gardens are an issue.
Regular Maintenance	Replace plants to maintain vegetation density.	As required.
	Remove sediment, litter and debris build up from around the inlets.	Typically undertaken quarterly however, this could be undertaken more frequently whilst sweeping the footpaths and roads.
Occasional Maintenance	Infill any holes or scour within the filter medium. Improve erosion protection if required by way of increasing plant density or installing rocks at bioretention inlet to reduce water energy.	As required.
	Repair minor accumulations of silt by raking away surface mulch, scarifying surface medium and replacing mulch.	As required.
Remedial Actions	Remove and replace filter medium/vegetation coverage.	As required but likely to be within > 20 years.

Table 4: Operation and Maintenance Requirements for Bioretention Systems

Commercial in Confidence

Attenuation Basin

- 4.83. It is not anticipated that the attenuation basin will require a rigorous maintenance regime as long as silt is removed on a regular basis. A suitable maintenance regime for the attenuation basin would be as follows:
 - 1. Monthly removal of litter, mowing grass & check outlet for blockages.
 - 2. Annually sediment removal and tidy dead plant growth.
 - 3. As required repair inlets and outlets and reinstate design levels. Refer to Table 5, below

Maintenance Schedule	Required Actions	Frequency	
	Remove litter and debris	Monthly, or as required	
Regular maintenance	Cut grass – landscaped areas and access routes	Monthly (during growing season), or as required	
	Manage other vegetation and remove nuisance plants	Monthly, at start, then as requested	
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	Annually or as required	
	Prune and trim trees and remove cuttings	As required	
	Remove sediment from pre-treatment system when 50% full	As required	
	Repair erosion or other damage by re-turfing or reseeding	As required	
Remedial actions	Relevel uneven surfaces and reinstate design levels	As required	
	Repair or rehabilitate inlets and outlets	As required	
Monitoring	Inspect inlets, outlets and overflows for blockages and clear if required.	Monthly	
	Inspect bank slopes, structures, pipework etc for evidence of physical damage	Monthly	
	Inspect inlets and pre-treatment systems of silt accumulation; establish appropriate silt removal frequencies	Half Yearly	

Table 5: Attenuation Basin Maintenance Requirements

Commercial in Confidence

5. Proposed Foul Drainage:

Existing Foul Drainage:

5.1. The existing site is already served by a private treatment plant with a discharge to local watercourse. However, this plant will not be suitable to serve the new development (from EA letter to client).

Public Foul Sewer Network:

5.2. Asset records obtained from Thames Water indicate that there is one public sewer within the vicinity of the site. Thames water have confirmed, in consultation letter PLAN-018980, that the rising main is not suitable for connection of foul (gravity) sewers.

Foul Drainage Hierarchy:

- 5.3. There are no foul public sewers within the vicinity of the area to make a viable connection to.
- 5.4. There is sufficient space within the site layout to accommodate a suitable sized package sewage plant.
- 5.5. It is anticipated that the foul runoff from the proposed development will be discharged to a suitably sized private sewage treatment plant located in the north western corner of the site (see Proposed Drainage Layout in Appendix D).
- 5.6. Infiltration of the treated effluent is not possible due to the weld clay bedrock geology. From the size of the development, it is estimated that approximately 132 people will live at the site. The size of a sewage treatment plant is calculated using the flow (180 litres per person per day) and BOD (biochemical oxygen demand) (60 grams per person per day). For this site that equates to 23.76m³ of flow and 7.92kg of BOD.
- 5.7. As such, it is proposed to discharge treated effluent from the sewage treatment plant to the same outflow as the SuDS features to the north of the site. This will then discharge into a drainage ditch, 35m north of the site.

Adoption and Maintenance:

- 5.8. The private sewage treatment plant will be privately owned and maintained.
- 5.9. The private sewage treatment plant will be maintained in accordance with the manufacture and suppliers specification.

Treatment of Effluent:

- 5.10. Incoming sewage will be screened to prevent non-degradable products entering the digestion chamber. The screened sewage will be aerated and a microbial 'soup' developed that digests the pollutants and organic matter in the sewage. The beneficial microbes are constantly topped up with the microbes that settle out at the bottom of the final settlement tank, ensuring a constant supply of bacteria for the digestion process.
- 5.11. The treated sewage then enters the final settlement chamber where activated sludge bacteria settle out at the bottom. These beneficial microbes are constantly returned to the digestion chamber to boost the treatment system performance.
- 5.12. Discharge to watercourses and ditches is accepted by the Environment Agency, without the need for a permit, if the installation complies with the General and Binding Environment Agency Rules.

Commercial in Confidence

6. Discussion and Conclusions:

- 6.1. This Surface Water and Foul Drainage Technical Note has been prepared by Unda Consulting Limited on behalf of Aitco Ltd, to address pre-commencement Conditions 9, 10, 11 and 12.
- 6.2. The site is occupied by a former mill and is approximately 14631m² in size. The site is comprised of a number of buildings and is currently utilised by a collection of craft shops and stalls including a tea room. The existing buildings are predominantly located in the centre west and north of the site with vacant land to the south. According to plans provided by the client, the main area of the site is accessed via a two-way tarmacked road off the B2104 adjacent east. Google imagery indicates that the proposed development area, in the west of the site, is already largely underlain by hardstanding.
- 6.3. According to available information the site is currently underlain by approximately 5483m² of hardstanding comprising 2342m² of built footprint and 3141m² of concrete. As such, the existing site is considered to be formed of approximately 37% impermeable surfaces.
- 6.4. A measured topographical survey has been undertaken at the site and provided by the client for inclusion within the report. This indicates that levels on site range between 4.71mAOD in the north and 10.79mAOD in the south west.
- 6.5. According to spot height levels, the site appears to generally slope from land in the south towards the northern periphery.
- 6.6. Based on the plans provided, the twenty four residential dwellings are proposed to be development upon land with an approximate elevation of between 4.82mAOD and 8.54mAOD.
- 6.7. The proposed planning application is for redevelopment of the site with construction of twenty four new residential dwellings, with associated access road and parking. Post development the total roof area of the new residential dwellings and carports will cover approximately 2240m².
- 6.8. However, it is worth noting that the proposed plans include demolition of a number of existing buildings and incorporation of some of the existing hardstanding within the residential housing scheme, amounting to approximately 4110m².
- 6.9. Despite this, attenuation sizing within the strategy has been based on all newly introduced impermeable surfacing (6441m²), comprising both post development roof area and hardstanding. Thus significant betterment will be provided post development.
- 6.10. The 1:50,000 BGS map shows the site to be located directly upon the bedrock of Weald Clay Formation Mudstone. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Deep Claystone/Mudstone with a soil texture of Clay to Clayey Loam.
- 6.11. The published Environment Agency Groundwater Vulnerability map shows the site is not located within an area classified as a Groundwater Source Protection Zone.
- 6.12. There are no existing watercourses or rivers at the site or along the application boundary.
- 6.13. According to information provided by the client the nearest watercourse to the site is an unnamed open channel some 35m north. It is reported that current building operations discharge into this watercourse via an existing piped service connection.
- 6.14. Asset records have also been obtained from Thames Water Ltd. These indicate the presence of only one public sewer within vicinity to the site.
- 6.15. According to the records provided, a public rising main sewer flows beneath the Cuckoo Trail adjacent west of the site. Thames Water have confirmed, in consultation letter PLAN-018980, that the rising main is not suitable for connection of foul (gravity) sewers. As such an alternative means of surface water and foul discharge will need to be established.

Surface Water Drainage Strategy Discussion

- 6.16. The 1:50,000 BGS map shows the site to be located directly upon the bedrock of Weald Clay Formation Mudstone. The soil type taken from the BGS UKSO Soil Map Viewer, shows a soil parent material of Deep Claystone/Mudstone with a soil texture of Clay to Clayey Loam.
- 6.17. Despite being reportedly underlain by Weald Clay Formation infiltration testing has been undertaken at the site.

Commercial in Confidence

- 6.18. An intrusive site investigation was undertaken by Southern Testing in June 2020 and a factual soakage test report issued on 8th July 2020. Given the size of the site, a total of four trial pits were excavated throughout the proposed development area to varying depths of between 2.8m and 3.0mbgl (refer to TP1 TP4 on location plan in soakage report appendix).
- 6.19. Typically, a minimum soakage rate of 0.1 l/m²/min is required for conventional soakaways to meet the BRE365 requirement of a soakaway half empty time of less than 24 hours. Results from all four pits failed to meet this value, and the tests did not complete the necessary drop in level (25% full) to calculate a compliant value.
- 6.20. Given the results from in-situ infiltration testing in June 2020, the site is not considered suitable for infiltration drainage, and an attenuation based drainage strategy is proposed.
- 6.21. Based upon information provided by the client, surface water generated within the existing site boundary is likely to currently discharge at an uncontrolled rate via overland/subsurface flow into either the drainage channel in the north or to the south east.
- 6.22. Having reviewed both pre-existing discharge options, whilst the preferred discharge location in the original drainage strategy was to the south east, given the site's natural gradient is considered most appropriate to utilise the existing piped connection in the north.
- 6.23. Utilising the northern connection for post development runoff also corresponds with East Sussex County Council's consultation comments, dated 13th October 2017, which state:

Our preference is for the northern outfall to be used as this involves a short section of sewer and then discharges directly to the watercourse, unless the eastern outfall is proven to have significant benefits. We would request that each of the outfalls is investigated and the most appropriate outfall selected prior to the layout being fixed through any Reserved Matters application. This will also depend on the topography of the site.

- 6.24. Existing greenfield runoff rates for the site have been calculated as 6.4 l/s for the 1:1 annual runoff event, 17.0 l/s for the 1:30 year event and 24.0 l/s for the 1:100 year event. Refer to calculations in appendix.
- 6.25. However, the existing site is brownfield and covered by approximately 5483m² of impermeable surfacing, comprising the existing built footprint and hardstanding. The existing site is therefore approximately 37% impermeable surfaces. Runoff rates for the existing site (including the 37% impermeable coverage) have been calculated using MicroDrainage as 10.8 l/s for the 1:1 annual runoff event, 24.9 l/s for the 1:30 year event and 31.3 l/s for the 1:100 year event. Refer to calculations in appendix.
- 6.26. Runoff from proposed roof areas and hardstanding will be managed via a number of separate SuDS systems. However, from all SuDS features surface water flows will be directed in a controlled manner towards the north of the site. From here, water will be gradually discharged, via the existing piped connection, to the open watercourse some 35m north of the red outline boundary.
- 6.27. Outflow from the site will be limited by three hydro-brake flow control devices to a combined maximum rate of 3.2 l/s.
- 6.28. Below is a summary of the proposed mechanisms of surface water drainage at the site for each element of the scheme.

Element	Raingarden	Pond	Tanked Permeable Paving	Attenuation Storage Tank
Road, Paving and Parking				
Roof Area: Plots 1 – 4				
Roof Area: Plots 5 - 6				
Roof Area: Plots 7 – 8				
Roof Area: Plot 9				
Roof Area: Plots 10 – 24				
Car Ports				

- 6.29. Refer to pages 12 to 15 for further information regarding the individual SuDS sizing.
- 6.30. The Pollution Mitigation Indices for tanked permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, tanked permeable pavements will provide sufficient water quality treatment prior to discharge to ground.

Commercial in Confidence

- 6.31. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.
- 6.32. In addition to the water quality improvements stated in the previous sections, there will be an oil interceptor located upstream of the outfall to the watercourse. This will further reduce the pollution before the water leaves the site to form a two-stage filtration system.
- 6.33. Should the onsite drainage system fail under extreme rainfall events or blockage, flooding may occur within the site. In the event of the drainage system failure, the runoff flow can be managed through detailing the new external levels to direct water away from structures.

Foul Drainage Strategy Discussion

- 6.34. There are no foul public sewers within the vicinity of the area to make a viable connection to.
- 6.35. There is sufficient space within the site layout to accommodate a suitable sized package sewage plant.
- 6.36. It is anticipated that the foul runoff from the proposed development will be discharged to a suitably sized private sewage treatment plant located in the north western corner of the site (see Proposed Drainage Layout in Appendix D).
- 6.37. Infiltration of the treated effluent is not possible due to the weld clay bedrock geology. From the size of the development, it is estimated that approximately 132 people will live at the site. The size of a sewage treatment plant is calculated using the flow (180 litres per person per day) and BOD (biochemical oxygen demand) (60 grams per person per day). For this site that equates to 23.76m³ of flow and 7.92kg of BOD.
- 6.38. As such, it is proposed to discharge treated effluent from the sewage treatment plant to the same outflow as the SuDS features to the north of the site. This will then discharge into a drainage ditch, 35m north of the site.
- 6.39. This drainage strategy has been undertaken in accordance with the principles set out in NPPF. We can conclude that providing the development adheres to the conditions advised above, the said development proposals can be accommodated without increasing flood risk within the locality in accordance with objectives set by Central Government and the EA.

Unda Consulting Limited August 2020

Commercial in Confidence

7. Appendix

A - Proposed Plans and Design & Access Statement:

- Site Location Plan Ecotecture;
- Proposed Site Plan Ecotecture;
- Design and Access Statement Ecotecture.

B – Consultee Responses:

- Environment Agency Consultation Response (HA/2017/119589/01-L01);
- Wealden District Council Consultation Response (GK/LV8000);
- East Sussex County Council Consultation Response (WD/2017/0839/MAO);
- Southern Water Consultation Response (PLAN-018980).

C - MicroDrainage Calculations:

- ICP SUDS Rural Runoff Calculations;
- ICP SUDS Urban Runoff Calculations;
- Tanked Permeable Paving and Hydro-Brake Calculations;
- Rain Garden Cascade;
- Pond Sizing and Hydro-Brake Calculations;
- Attenuation Storage and Hydro-Brake Calculations.

D - Drainage Layout Plans:

• Proposed Drainage Layout [89594-01];

E – Information by Others:

• Infiltration Test Results – Southern Testing Ltd.

Commercial in Confidence

Notes

Do not scale off this drawing except for planning purposes Check all dimensions on site before any work commences All goods, materials and workmanship must conform to current building regulations, british standards and codes of practice. Copyright of this drawing is to be retained by Ecotecture Ltd and must not be reproduced without written consent from the practice.

Drawing to be printed A1

Ν

	Areas Old	Loom Mill							
	Number of	National	Actual	Storage	Total	Footprint	Total	Total	
	bedrooms	Space Standard	GIA m2	area m2	units	m2	GIA	Footprint	
House Type A	5b (8p)	128	170	3.5	2	99	340	198	m2
House Type B	2b (4p)	79	80	2	6	50	480	300	m2
House Type C	3b (6p)	102	104	2.5	4	63	416	252	m2
House Type D	4b (8p)	124	126	3	4	75	504	300	m2
House Type E	3b (6p)	102	106	3	8	64	848	512	m2
	A A A A A A A A A A A A A A A A A A A						2588	1562	m2

Notes

Do not scale off this drawing except for planning purposes Check all dimensions on site before any work

commences

All goods, materials and workmanship must conform to current building regulations, british standards and codes of practice.

Copyright of this drawing is to be retained by Ecotecture Ltd and must not be reproduced without written consent from the practice.

Drawing to be printed A1

The red line has been drawn based on information provided by the client, the red line on this drawing should not form part of any sales or legal documentation, please always refer to the title deeds.

Schedule of Accomodation

Address:	Old Loom Mill
	Earsham Road
	Hailsham
	BN27 2RH

Description: Proposed Site Plan

Scale: 1:500, 1:1 Drawn: CH

Date: Jun' 19 Checked: JS ₆₈₉/100

Drawing No:

Wealden District Council Development Control Vicarage Lane Hailsham East Sussex BN27 2AX Our ref:HA/2017/119589/01-L01Your ref:WD/2017/0839/MAO

Date:

25 July 2017

Dear Sir/Madam

DEMOLITION OF EXISTING BUILDINGS IN B1/B8 USAGE AND CAFE AND ERECTION OF 24 NO. FAMILY HOUSES.

OLD LOOM MILL (TEA ROOM) ERSHAM ROAD, HAILSHAM, EAST SUSSEX, BN27 2RH.

Thank you for the consultation on the above application, please quote our reference on all correspondence.

Environment Agency Position

With regards to the foul drainage proposals, there are no objections, in principal, to the use of a private treatment plant.

Although there is a main public sewer running past the site, this is the rising main that pumps sewage from Polegate to the Hailsham works. It will not be possible to connect the development to this rising main and the nearest suitable public sewer is beyond an acceptable distance for a connection to be made.

The existing café and units are already serviced by a private treatment plant with a discharge to the local watercourse. This plant will not be suitable to serve the new development.

The applicant should be advised that a permit will be required for this proposal, because the proposed plant will discharge into the Pevensey Levels SSSI, any environmental permit is likely to be subject to stringent discharge standards and there is no guarantee that one would be issued.

Miss Suz Greenwood Planning Advisor, Environment Agency

Direct dial 02084745098 Direct fax Direct e-mail suz.greenwood@environment-agency.gov.uk My reference GK/LV8000

ask for Graham Kean

date 22 August 2017

MEMORANDUM

Mr C Bending, Planning

your reference

Wealden District Council

Council Offices, Vicarage Lane Hailsham East Sussex BN27 2AX

website : www.wealden.gov.uk

Planning Application WD/2017/0839/MAO The Old Loom Mill, Ersham Road, Hailsham

I write further to your memorandum of 4 July 2017 and your subsequent email of 28 September 2017 regarding the above planning application and I would have the following comments.

The whole of the site lies within EA Flood Zone 1. The site does not appear to be at risk from general tidal or sea flooding provided the man-made sea defences at Eastbourne and Pevensey Bay are maintained. The site does not appear to be at risk from failure of a drainage asset such as a canal or reservoir. There is a low possibility of fluvial flooding from the watercourse north of the application site. There is a possibility of surface water or groundwater flooding. There are no ponds or watercourses within the application site. There is an ordinary watercourse running west to east just north of the application site. East of Ersham Road, this eventually discharges via a pumping station into the Saltmarsh Sewer main river. The area to the east of Ersham Road is controlled by the Pevensey and Cuckmere Water Level Management Board. There are ongoing problems with flows and clearance of the ordinary watercourse to the north of the application site.

The Geological Map states that the site is on the Weald Clay Formation of mudstones.

There are no existing, adopted, dedicated, surface water sewers within the vicinity of the application site.

As infiltration is the first recommended drainage method in the SUDS hierarchy, this method requires consideration. However, given the nature of the geology and the presence of watercourses on the surface in the vicinity of the application site, it is unlikely that this method would work.

The outline surface water drainage layout is given at Appendix 4. It shows surface water running into areas of permeable paving to be used as storage. Given the underlying geology, little or any water is likely to drain into the subsoil, so the permeable paving has perforated land drains at the bottom of the formation which are then drained to a storage pond in the south-east corner of the application site.

On the plan at Appendix 4 the final outlet from this pond is shown running north to the entrance road to discharge, whilst on the plan at figure 3 the discharge point is shown as an existing culvert (presumably owned by ESCC, therefore) under Ersham Road to the south-east of the site (although the point of connection is still within the applicant's land). I would obviously require more clarity as to which option is to be used.

The depth and to a lesser extent the size of the any storage device will be influenced by the actual ground conditions encountered on site. I would therefore like to see the a site investigation which incorporates site specific test pits and ground water monitoring, preferably in winter, to establish what depth of storage is practical and whether such features will have to be lined to prevent groundwater infiltration. Any unlined feature should achieve a 1.0 metre vertical separation between the groundwater levels and the base of the feature.

In considering the drainage principles proposed for the site, the Lead Local Flood Authority, ESCC, will require full detail in the drainage calculations used to design the system and Wealden, as the planning authority, would support this request. The calculations should prove that the final design can accommodate the site runoff rates for the standard 1 in 100 year rainfall event plus 40% climate change allowance plus urban creep. The calculations should also show that the culvert under Ersham Road immediately downstream of the application site and the following unclassified watercourse, into which it is proposed to discharge, are capable of taking the proposed flows.

I note that, although maintenance activities for the surface water drainage system are considered within paragraph 4.22, these are largely generic and must remain so until the final layout detail is provided. Experience elsewhere suggests that it is most unlikely that any local authority or utility company will adopt the new on-site surface water drainage system. Therefore it will be necessary for a residents' association/site management company to be set up by the site owner to manage and maintain the scheme (as this section makes clear) and the information eventually supplied to this body (which will probably be composed of non-technical persons) needs to reflect this. As much as possible of the system should be located within the public open areas and assured access will be obviously be required to those parts of the system which are within private ground.

The Council would not wish to see exceedance flows directed towards the Cuckoo Trail.

Over and above the obtaining of planning permission, it may be necessary to obtain a discharge consent for the final outlet from the Pevensey and Cuckmere Water Level Management Board.

Provision of foul sewage drainage is a matter for Southern Water to comment on, in particular, in view of the capacity problems within the Hailsham catchment. It should be noted that the foul sewer running south to north along the Cuckoo Trail is a pumped main and therefore cannot accommodate a connection from this application site.

Should you be minded to grant planning permission, the following **conditions** must be applied to be reflected in any full application/reserved matter/discharge of conditions and in any section 106 Agreement which may be entered into.-

No development shall take place until full details of the surface water drainage scheme, have been submitted to and approved in writing by the local planning authority. The surface water drainage scheme should be confirmed as deliverable by an assessment of the site's potential for disposing of surface water by means of a sustainable drainage system. The submitted details shall include the following:

- i. Be supported by a site investigation which incorporates site specific test pits and ground water monitoring, preferably in winter, to establish the practical depth of any storage features, whether they will need to be lined and to ensure any unlined feature achieves a 1.0 metre vertical separation between the groundwater levels and the base of the feature.
- ii. Supply hydraulic calculations to the correct level of climate change (40%) to the satisfaction of the Lead Local Flood Authority
- iii. Provide a management and maintenance plan for the development which shall include the arrangements for the setting up of any necessary company/association to secure the operation of the scheme throughout its lifetime.
- iv. Supply detailed plans, layouts and sections of the proposed drainage system, and construction details of any non-standard features and pollution control devices.
- v. Provide sufficient information to confirm the outlet arrangements, to ensure that any permissions to connect are in place and to confirm the capacity and condition of the existing outlet watercourse.

NOTE: Attention should be given to <u>non-statutory technical standards for</u> <u>sustainable drainage systems</u>, the ESCC "Guide to Sustainable Drainage Systems in East Sussex" and the total costs of implementing the drainage scheme, that is design, construction and maintenance costs.

REASON: To reduce the risk of flooding, both on and off site, to improve and protect the water quality and improve habitat and amenity having regard to the guidance set out in the National Planning Practice Guidance and at paragraph 103 of the NPPF and any local plan policies where appropriate according to the local planning authority, for example WCS14 of CSLP, saved policy CS2 of the Wealden Local Plan.

Please contact Graham Kean on extension 3126 if you wish to discuss the matter further or to meet on site.

Graham Kean Engineer and Countryside Officer

Communities Economy and Transport

Rupert Clubb BEng(Hons) CEng MICE Director County Hall St Anne's Crescent Lewes East Sussex BN7 1UE

Tel: 0345 60 80 190 www.eastsussex.gov.uk

Mr C Bending Wealden District Council Council Offices Vicarage Lane Hailsham East Sussex

Date 13/10/2017

Dear Mr Bending

SUD/WD/2017/042 - DEMOLITION OF EXISTING BUILDINGS IN B1/B8 USAGE AND CAFE AND ERECTION OF 24 NO. FAMILY HOUSES.

Location: THE OLD LOOM MILL, ERSHAM ROAD, HAILSHAM, BN27 2RH

Planning Application Reference: WD/2017/0839/MAO

Received Date: 4 July 2017

Position of the Lead Local Flood Authority:

No objection	The information provided is satisfactory and enables the LLFA to determine that the proposed development is capable of managing flood risk effectively.	
No objection	The information provided is satisfactory and enables the LLFA to determine that the proposed development is capable of managing flood risk effectively. Although there will be a need for standard conditions which are outlined in this response.	
No objection in principle subject to the imposition of conditions	Whilst the application documentation has not met all the County Council's requirements, it is possible that the risk is capable of being mitigated to acceptable levels by the application of planning conditions which are outlined in this response.	~
Objection due to Insufficient Information	The applicant has failed to meet the requirements to assess its acceptability in flood risk terms. The LLFA will respond in 21 days of receipt of the requested information	
Objection	The application presents an unacceptable on site/off site flood risk.	

Cont./...

Detailed Comments:

Following our previous response dated 25 July 2017 and further information submitted by the applicant, which we received on 28 September 2017, this letter represents our updated comments on the above application.

We appreciate that this is an outline application and therefore the layout is only indicative and on this basis we do not wish to raise an objection to the principle of the proposed development on this site. However, we do not consider that the surface water drainage strategy should be progressed in its current form.

The Flood Risk Assessment identifies two options for the outfall for the surface water drainage network. Our preference is for the northern outfall to be used as this involves a short section of sewer and then discharges directly to the watercourse, unless the eastern outfall is proven to have significant benefits. We would request that each of the outfalls is investigated and the most appropriate outfall selected prior to the layout being fixed through any Reserved Matters application. This will also depend on the topography of the site.

The drainage strategy drawing is very approximate and we would expect a more detailed drainage strategy to be submitted when the development layout is being addressed. The detailed drainage strategy should demonstrate that sufficient attenuation can be provided within the site, and drained by gravity, to managed storm events up to and including the 1 in 100 year, including 40% climate change, event. It is also noted that the hydraulic calculations show approximately 26m³ of flooding occurring within the site. This should be dealt with as part of the detailed drainage strategy or it should clearly be demonstrated that this flooding can be contained within the site without putting properties at risk.

If the Local Planning Authority is minded to grant planning permission, the LLFA requests the following comments should be addressed as part of the reserved matters application to ensure surface water runoff from the development is managed safely:

- Surface water runoff from the proposed development should be limited to the 3.2 l/s, for all rainfall events, including those with a 1 in 100 (plus climate change) annual probability of occurrence. Evidence of this (in the form hydraulic calculations) should be submitted with the detailed drainage drawings. The hydraulic calculations should take into account the connectivity of the different surface water drainage features.
- 2. The detailed design should include how surface water flows exceeding the capacity of the surface water drainage features will be managed safely. The surface water drainage design should show the route and details of the connection from the development site to the public Southern Water sewer or the watercourse if connection is directly to the watercourse.
- 3. A maintenance and management plan for the entire drainage system should be submitted to the planning authority before any construction commences on site. This plan should clearly state who will be responsible for managing all aspects of the surface water drainage system, including piped drains, and the appropriate authority should be satisfied with the

submitted details. Evidence that these responsibility arrangements will remain in place throughout the lifetime of the development should be provided to the Local Planning Authority.

- 4. The applicant should detail measures to manage flood risk, both on and off the site, during the construction phase. This may take the form of a standalone document or incorporated into the Construction Environment Management Plan for the development.
- 5. Prior to occupation of the development evidence (including photographs) should be submitted showing that the drainage system has been constructed as per the final agreed detailed drainage designs.

The proposed development connects to and discharges surface water flows into the Pevensey and Cuckmere Water Level Management Board (PCWLMB) area. The applicant will need to obtain consent for the PCWLMB at detailed design stage. The PCWLMB might require surface water discharge contribution, which the applicant should discuss with the board.

Yours sincerely

Adutz

Edward Sheath Head of Planning and Environment

Case Officer – Charlie Cooper, Sustainable Drainage Advisor T: 01273 335417 E: <u>SUDS@eastsussex.gov.uk</u>

Head of Development and Building Control Wealden District Council Council Offices Vicarage Lane Hailsham East Sussex BN27 2AX

Developer Services Southern Water Sparrowgrove House Sparrowgrove Otterbourne Hampshire SO21 2SW

Tel: 0330 303 0119 Email: <u>developerservices@southernwater.co.uk</u> _{Your Ref} WD/2017/0839/MAO

Our Ref PLAN-018980 Date 24/07/2017

Dear Sirs,

Proposal: Demolition of existing buildings in B1/B8 usage and cafe and erection of 24 no. family houses. Site: The Old Loom Mill, Ersham Road, Hailsham, BN27 2RH. WD/2017/0839/MAO

Thank you for your letter of 04/07/2017. Please find attached a plan of the sewer records showing the approximate position of a public rising main sewer only in the vicinity of the site. This is not suitable for connection of foul (gravity) sewers.

The applicant is advised to consult the Environment Agency directly regarding the use of a package treatment plant which disposes of effluent to sub-soil irrigation. The owner of the premises will need to maintain the works to ensure its long term effectiveness.

Our initial investigations indicate that there are no public surface water sewers in the area to serve this development. Alternative means of draining surface water from this development are required.

The planning application drainage report makes reference to drainage using Sustainable Urban Drainage Systems (SUDS).

Under current legislation and guidance SUDS rely upon facilities which are not adoptable by sewerage undertakers. Therefore, the applicant will need to ensure that arrangements exist for the long term maintenance of the SUDS facilities. It is critical that the effectiveness of these systems is maintained in perpetuity. Good management will avoid flooding from the proposed surface water system, which may result in the inundation of the foul sewerage system.

Thus, where a SUDS scheme is to be implemented, the drainage details submitted to the Local Planning Authority should:

- Specify the responsibilities of each party for the implementation of the SUDS scheme

- Specify a timetable for implementation

- Provide a management and maintenance plan for the lifetime of the development.

This should include the arrangements for adoption by any public authority or statutory undertaker and any other arrangements to secure the operation of the scheme throughout its lifetime.

Due to changes in legislation that came in to force on 1st October 2011 regarding the future ownership of sewers it is possible that a sewer now deemed to be public could be crossing the above property. Therefore, should any sewer be found during construction works, an investigation of the sewer will be required to ascertain its condition, the number of properties served, and potential means of access before any further works commence on site.

The applicant is advised to discuss the matter further with Southern Water, Sparrowgrove House, Sparrowgrove, Otterbourne, Hampshire SO21 2SW (Tel: 0330 303 0119) or <u>www.southernwater.co.uk</u>".

Yours sincerely

gonand

Developer Services

Southern Water Sparrowgrove House Otterbourne Winchester Hampshire SO21 2SW www.southernwater.co.uk

Unda Consulting Ltd		Page 1
Southpoint	Greenfield Runoff Rate	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Micro
Date 14/08/2020	Designed by TS	
File	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.450 Area (ha) 1.463 Urban 0.000 SAAR (mm) 800 Region Number Region 7

Results 1/s

 QBAR Rural
 7.5

 QBAR Urban
 7.5

 Q100 years
 24.0

 Q1 year
 6.4

 Q30 years
 17.0

 Q100 years
 24.0

Unda Consulting Ltd		Page 1
Southpoint	Brownfield Runoff Rate	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Micro
Date 14/08/2020	Designed by TS	
File	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.450 Area (ha) 1.463 Urban 0.370 SAAR (mm) 800 Region Number Region 7

Results 1/s

QBAR Rural 7.5 QBAR Urban 12.7 Q100 years 31.3 Q1 year 10.8 Q30 years 24.9 Q100 years 31.3

Unda Consulting Ltd							Page 1
Southpoint							
Old Brighton Road		Devel	lopment	- of 24	4 Dwell	inas	
Catwick BH11 OPR		89594	1-Ecote				
	— Micro						
Date 17/08/2020	7 70 0 0	Desig	gnea by	/ 1S			Drainage
File TPP WITH PLOTS	/ 10 8 2.	. Check	ked by	EJ			
Innovyze		Sourc	ce Cont	trol 20	020.1		
		c 10	0		- ·	1 () 4 (
Summary	of Results	s for 10	<u>vear</u>	Retur	<u>n Perio</u>	<u>a (+40</u>	<u>);;)</u>
	Half 1	Drain Time	e : 1383	8 minute	es.		
Storm	Max Max	Max	M	lax	Max	Max	Status
Event	Level Depth	Infiltrat	ion Cor	trol Σ	Outflow	Volume	
	(m) (m)	(1/s)	(1	/s)	(l/s)	(m³)	
15 min Summer	4.626 0.146		0.0	2.1	2.1	102.6	ОК
30 min Summer	4.680 0.200		0.0	2.1	2.1	140.4	O K
60 min Summer	4.737 0.257		0.0	2.1	2.1	180.2	Flood Risk
120 min Summer	4.793 0.313		0.0	2.1	2.1	219.7	Flood Risk
180 min Summer	4.823 0.343		0.0	2.1	2.1	241.0	Flood Risk
240 min Summer	4.843 0.363		0.0	2.1	2.1	255.1	Flood Risk
360 min Summer	4.870 0.390		0.0	2.1	2.1	273.9	Flood Risk
480 min Summer	4.886 0.406		0.0	2.1	2.1	285.1	Flood Risk
600 min Summer	4.896 0.416		0.0	2.1	2.1	292.0	Flood Risk
720 min Summer	4.901 0.421		0.0	2.1	2.1	296.0	Flood Risk
960 min Summer	4.905 0.425		0.0	2.1	2.1	298.7	Flood Risk
2160 min Summor	4.900 0.420		0.0	2.1 2.1	2.1	295.1	Flood Risk
2880 min Summer	4.007 0.407		0.0	2.1	2.1	203.9	Flood Risk
4320 min Summer	4 833 0 353		0.0	2.1	2.1	247 9	Flood Risk
5760 min Summer	4.790 0.310		0.0	2.1	2.1	217.9	Flood Risk
7200 min Summer	4.753 0.273		0.0	2.1	2.1	191.5	Flood Risk
8640 min Summer	4.719 0.239		0.0	2.1	2.1	168.0	Flood Risk
10080 min Summer	4.689 0.209		0.0	2.1	2.1	147.1	Flood Risk
15 min Winter	4.646 0.166		0.0	2.1	2.1	116.4	O K
	Storm	Rain	Flooded	Discha	rge Time	-Peak	
	Event	(mm/hr)	Volume	Volum	ne (mi	ins)	
			(m³)	(m³)	1		
1	5 min Summer	138 005	0 0	Q	95	19	
1	0 min Summer	92.274	0.0	12	3.6	34	
	0 min Summer	58.745	0.0	17	6.2	64	
12	0 min Summer	36.008	0.0	21	8.2	124	
18	0 min Summer	26.598	0.0	24	1.9	184	
24	0 min Summer	21.360	0.0	25	8.4	242	
36	0 min Summer	15.683	0.0	28	2.0	362	
48	0 min Summer	12.575	0.0	29	7.3	482	
60	0 min Summer	10.586	0.0	30	6.6	602	
72	0 min Summer	9.192	0.0	31	0.7	722	
96	0 min Summer	7.349	0.0	30	6.7	960	
144	0 min Summer	5.351	0.0	28	7.8	1226	
216	0 min Summer	3.888	0.0	43	8.3	1600	
288	U min Summer	3.096	0.0	46	1.1	2016	
432	o min Summer	2.242	0.0	48	0.1	2852	
576	o min summer	T./QT	0.0	53	0.4	30Z4	

4392

5104

5848

19

549.5

564.1

574.5

102.0

0.0

0.0

0.0

0.0

©1982-2020 Innovyze

1.491

1.141

7200 min Summer

10080 min Summer

8640 min Summer 1.289

15 min Winter 138.005

Unda Consulting Ltd					
Southpoint	Tanked Permeable Paving				
Old Brighton Road	Development of 24 Dwellings				
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirro			
Date 17/08/2020	Designed by TS				
File TPP WITH PLOTS 7 TO 8 2	Checked by EJ	Diamage			
Innovyze	Source Control 2020.1				

Summary of Results for 100 year Return Period (+40%)

	Storm	L	Max	Max	Max	Max	Max	Max	Status
	Event		(m)	Depth (m)	(1/s)	(1/e)	2 Outflow	Volume (m ³)	
			(111)	(111)	(1/5)	(1/5)	(1/5)	(111)	
30	min V	Winter	4.706	0.226	0.0	2.1	2.1	158.9	Flood Risk
60	min V	Winter	4.770	0.290	0.0	2.1	2.1	203.6	Flood Risk
120	min V	Winter	4.834	0.354	0.0	2.1	2.1	248.6	Flood Risk
180	min V	Winter	4.868	0.388	0.0	2.1	2.1	272.7	Flood Risk
240	min V	Winter	4.891	0.411	0.0	2.1	2.1	288.5	Flood Risk
360	min 🛛	Winter	4.921	0.441	0.0	2.1	2.1	310.0	Flood Risk
480	min V	Winter	4.940	0.460	0.0	2.1	2.1	323.2	Flood Risk
600	min V	Winter	4.952	0.472	0.0	2.1	2.1	331.7	Flood Risk
720	min 🛛	Winter	4.960	0.480	0.0	2.1	2.1	337.1	Flood Risk
960	min V	Winter	4.967	0.487	0.0	2.1	2.1	342.0	Flood Risk
1440	min 🛛	Winter	4.962	0.482	0.0	2.1	2.1	339.0	Flood Risk
2160	min V	Winter	4.943	0.463	0.0	2.1	2.1	325.5	Flood Risk
2880	min 🛛	Winter	4.921	0.441	0.0	2.1	2.1	309.9	Flood Risk
4320	min 🛛	Winter	4.868	0.388	0.0	2.1	2.1	272.5	Flood Risk
5760	min 🛛	Winter	4.805	0.325	0.0	2.1	2.1	228.3	Flood Risk
7200	min 🛛	Winter	4.746	0.266	0.0	2.1	2.1	186.6	Flood Risk
8640	min V	Winter	4.695	0.215	0.0	2.1	2.1	151.0	Flood Risk
10080	min V	Winter	4.652	0.172	0.0	2.1	2.1	121.1	ΟK

Storm		Rain	Flooded	Discharge	Time-Peak	
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
30	min	Winter	92.274	0.0	138.7	33
60	min	Winter	58.745	0.0	198.8	64
120	min	Winter	36.008	0.0	245.0	122
180	min	Winter	26.598	0.0	270.5	180
240	min	Winter	21.360	0.0	287.8	240
360	min	Winter	15.683	0.0	310.5	356
480	min	Winter	12.575	0.0	321.1	472
600	min	Winter	10.586	0.0	322.7	588
720	min	Winter	9.192	0.0	319.4	702
960	min	Winter	7.349	0.0	311.4	926
1440	min	Winter	5.351	0.0	295.8	1354
2160	min	Winter	3.888	0.0	492.7	1688
2880	min	Winter	3.096	0.0	517.5	2160
4320	min	Winter	2.242	0.0	534.9	3072
5760	min	Winter	1.781	0.0	599.1	3928
7200	min	Winter	1.491	0.0	621.6	4680
8640	min	Winter	1.289	0.0	639.3	5368
10080	min	Winter	1.141	0.0	652.4	6056

Unda Consulting Ltd	Page 3	
Southpoint	Tanked Permeable Paving	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirro
Date 17/08/2020	Designed by TS	
File TPP WITH PLOTS 7 TO 8 2	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	·

<u>Rainfall Details</u>

	Rainfall	l Model		FSR	V	Vinter	Storms	Yes
Return	Period	(years)		100		Cv (S	Summer)	0.750
		Region	England	and Wales		Cv (V	Vinter)	0.840
	M5-6	60 (mm)		20.700	Shortest	Storm	(mins)	15
	F	Ratio R		0.358	Longest	Storm	(mins)	10080
	Summer	Storms		Yes	Clim	nate Ch	nange %	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.447

Time (mins) Area From: To: (ha)

0 4 0.447

Unda Consulting Ltd		Page 4					
Southpoint	Tanked Permeable Paving						
Old Brighton Road	Development of 24 Dwellings						
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Micco					
Date 17/08/2020	Designed by TS						
File TPP WITH PLOTS 7 TO 8 2	Checked by EJ	Digingle					
Innovyze	Source Control 2020.1						
<u>M</u>	lodel Details						
Storage is On	line Cover Level (m) 4.980						
Porous	<u>Car Park Structure</u>						
Infiltration Coefficient Base	(m/hr) 0.00000 Width (m) 234.2					
Membrane Percolation (m	nm/hr) 1000 Length (m	10.0					
Max Percolation	(1/s) 650.6 Slope (1:X	.) 0.0					
Salety F	rosity 0.30 Evaporation (mm/day) 3					
Invert Leve	el (m) 4.480 Cap Volume Depth (m) 0.500					
<u>Hydro-Brake®</u>	<u>Optimum Outflow Control</u>						
Unit	Reference MD-SHE-0076-2100-0500-2100						
Design	n Head (m) 0.500						
Design 1	Flow (1/s) 2.1						
I	Flush-Flo™ Calculated						
A	Objective Minimise upstream storage						
Sump	Available Yes						
Diar	meter (mm) 76						
Invert	Level (m) 4.480						
Suggested Manhole Diar	meter (mm) 1200						
Control Poi	ints Head (m) Flow (l/s)						
Design Point (Ca	$1_{culated}$ 0.500 2.1						
F	'lush-Flo™ 0.149 2.1						
	Kick-Flo® 0.345 1.8						
Mean Flow over H	lead Range - 1.8						
The hydrological calculations have be Hydro-Brake® Optimum as specified. S Hydro-Brake Optimum® be utilised the invalidated	een based on the Head/Discharge relat Should another type of control device n these storage routing calculations	ionship for the other than a will be					
Depth (m) Flow (l/s) Depth (m) Flow	(l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)					
0.100 2.0 1.200	3.1 3.000 4.8 7.00	0 7.2					
	3.4 3.500 5.2 7.50 3.6 4.000 5.5 9.00	0 /.4 0 7 7					
0.400 1.9 1.800	3.8 4.500 5.8 8.50	0 7.9					
0.500 2.1 2.000	4.0 5.000 6.1 9.00	0 8.2					
0.600 2.3 2.200	4.1 5.500 6.4 9.50	0 8.4					
1.000 2.9 2.600	4.5 6.500 6.9						
1.000 2.9 2.000 4.9 0.000 0.9							
©198	2-2020 Innovyze						

Unda Consulting Ltd					Page 1
Southpoint					
Old Brighton Road					
Gatwick RH11 OPR					Micco
Date 17/08/2020 16:23	Desi	gned bv	Thomas-	Smith	
File	Chec	ked bv			Drainage
Innouvze	Sour	ce Cont	rol 2020) 1	
			101 2020	• -	
Cascade Summary of Results	s for P	lots 1	to 4 Rat	ingarden O	5 ls SRCX
<u>Sabouae Bunnary or Nebures</u>	<u> </u>	1000 1	<u> </u>		<u></u>
Upstream	Outf	low To		Overi	flow To
Structures					
(Nama) Diata E ta C a		ant Dine	at to Dom	d CDCV	(None)
(None) Plots 5 to 6 ai	nd car p	port Dire	ect to Pon	a.skcx	(None)
Storm M	lax Ma	x Max	Max	Status	
Event Le	vel Dep	th Contr	ol Volume		
(m) (m) (l/s) (m³)		
15 min Summor 7	625 0 0	75 0	2 0 7	O K	
30 min Summer 7.	660 0.1	, 5 0 00 0	.2 12.9	OK	
60 min Summer 7.	686 0.1	26 0	.2 16.2	0 K	
120 min Summer 7.	711 0.1	51 0	.3 19.4	Flood Risk	
180 min Summer 7.	723 0.1	63 0	.3 21.0	Flood Risk	
240 min Summer 7.	731 0.1	71 0	.3 22.0	Flood Risk	
360 min Summer 7.	740 0.1	80 0	.3 23.2	Flood Risk	
480 min Summer 7.	744 0.1	84 0	.3 23.7	Flood Risk	
600 min Summer 7.	745 0.1	85 0	.3 23.9	Flood Risk	
720 min Summer 7.	746 0.1	86 0	.3 24.0	Flood Risk	
960 min Summer 7.	746 0.1	86 U 01 0	.3 24.0	Flood Risk	
2160 min Summer 7	737 0 1	ο4 0 77 Ω	· 3 23.0	Flood Risk	
2880 min Summer 7.	729 0.1	69 0	.3 21.8	Flood Risk	
4320 min Summer 7.	712 0.1	52 0	.3 19.7	Flood Risk	
5760 min Summer 7.	697 0.1	37 0	.2 17.7	0 K	
7200 min Summer 7.	685 0.1	25 0	.2 16.1	0 K	
8640 min Summer 7.	674 0.1	14 0	.2 14.7	0 K	
Storm	Rain	Flooded	Discharge	Time-Peak	
Event (mm/nr)	volume (m ³)	volume (m ³)	(mins)	
		(111-)	(111-)		
15 min Summer 1	38.005	0.0	8.3	19	
30 min Summer	92.274	0.0	11.0	34	
60 min Summer	58.745	0.0	16.0	64	
120 min Summer	36.008	0.0	19.6	122	
180 min Summer	26.598	0.0	21.7	182	
240 min Summer	21.360	0.0	23.2	242	
360 min Summer	12.683	0.0	25.5 27 1	362	
600 min Summer	10 586	0.0	27.1	40U 582	
720 min Summer	9.192	0.0	20.3	62.4	
960 min Summer	7.349	0.0	30.7	748	
1440 min Summer	5.351	0.0	31.8	1010	
2160 min Summer	3.888	0.0	39.3	1424	
2880 min Summer	3.096	0.0	41.7	1820	
4320 min Summer	2.242	0.0	44.7	2636	
5760 min Summer	1.781	0.0	48.5	3408	
7200 min Summer	1,491	0.0	50.7	4184	
0040 min Summer	1.209	0.0	52.5	4920	
©1	982-202	20 Inno	vyze		
			-		

Unda Consulting Ltd							Page 2
Southpoint							
Old Brighton Road							
Gatwick RH11 0PR							Micco
Date 17/08/2020 16:23		esian	ed hi	7 ጥት	nomas-	Smith	
File		becke	d by	. 11	.1011100		Drainage
		necke			1 2020	1	<u> </u>
Innovyze	5	ource	Cont	ro.	1 2020	• ⊥	
Casas da Cummanus of Decul			. L _ 1	± -			E la ODOV
Cascade Summary of Result	ts io	or Pic	DTS I	το	<u>4 Rai</u>	ngarden U.	5 IS.SRCX
Storm							
Event	Level	Depth	Cont	rol	Volume	blatus	
	(m)	(m)	(1/	s)	(m ³)		
10080 min Summer	7.664	0.104		0.2	13.5	ОК	
30 min Winter	7.644	0.084).2) 2	14 5	O K O K	
60 min Winter	7.701	0.141		0.2	18.2	ОК	
120 min Winter	7.729	0.169		0.3	21.8	Flood Risk	
180 min Winter	7.744	0.184	. (0.3	23.7	Flood Risk	
240 min Winter	7.752	0.192	: (0.3	24.8	Flood Risk	
360 min Winter	7.763	0.203		0.3	26.2	Flood Risk	
480 min Winter 600 min Winter	7.769	0.209		0.3 N 3	26.9	Flood Risk	
720 min Winter	7.772	0.211		0.3	27.2	Flood Risk	
960 min Winter	7.771	0.211	. (0.3	27.2	Flood Risk	
1440 min Winter	7.767	0.207	' (0.3	26.7	Flood Risk	
2160 min Winter	7.756	0.196	i I	0.3	25.3	Flood Risk	
2880 min Winter	7.743	0.183		0.3	23.7	Flood Risk	
4320 min Winter 5760 min Winter	7 699	0.159		0.3 n 2	20.5	Flood Risk	
7200 min Winter	7.681	0.130		0.2	15.6	ОК	
8640 min Winter	7.666	0.106		0.2	13.7	ОК	
10080 min Winter	7.655	0.095	i I	0.2	12.2	O K	
Storm	Pai	~ F1	aadad	Die	charge	Time-Dook	
Event	(mm/)	hr) V	olume	V		(mins)	
	((m ³)	•	(m ³)	(1110)	
10080 min Summer	1.	141	0.0		54.0	5656	
15 min Winter 30 min Winter	: 138. · 92	005 274	0.0		9.3	19	
60 min Winter	58.	274 745	0.0		17.9	62	
120 min Winter	36.	008	0.0		21.9	122	
180 min Winter	26.	598	0.0		24.3	180	
240 min Winter	21.	360	0.0		25.9	238	
360 min Winter	15.	683	0.0		28.4	352	
480 min Winter 600 min Winter	10 ±2	575 586	0.0		30.2 31 5	466	
720 min Winter	. 10. 9.	192	0.0		32.5	680	
960 min Winter	7.	349	0.0		33.8	780	
1440 min Winter	5.	351	0.0		34.7	1082	
2160 min Winter	3.	888	0.0		44.1	1536	
2880 min Winter	3.	096	0.0		46.7	1984	
4320 min Winter 5760 min Winter	2.	242 781	0.0		50.0 51 3	2812	
7200 min Winter	⊥. 1.	491	0.0		56.8	4400	
8640 min Winter	1.	289	0.0		58.9	5184	
10080 min Winter	1.	141	0.0		60.6	5944	
(C	01982-	-2020	Inno	VV7	ze		
		/	0	- 1 2	-		

Unda Consulting Ltd		Page 3
Southpoint		
Old Brighton Road		
Gatwick RH11 OPR		Micco
Date 17/08/2020 16:23	Designed by Thomas-Smith	
File	Checked by	Urainage
Innovyze	Source Control 2020.1	
	504100 00101 2020.1	
<u>Cascade Rainfall Details f</u>	or Plots 1 to 4 Raingarden 0.5 ls	S.SRCX
Rainfall Model	FSR Winter Storms Y	es
Return Period (years)	100 Cv (Summer) 0.7	50
M5-60 (mm)	20.700 Shortest Storm (mins)	15
Ratio R	0.358 Longest Storm (mins) 100	80
Summer Storms	Yes Climate Change % +	40
<u></u>	ne Area Diagram	
Tot	al Area (ha) 0.038	
T: Fr	ime (mins) Area om: To: (ha)	
	0 4 0 038	
	0 4 0.038	

Unda Consulting Ltd		Page 4
Southpoint		
Old Brighton Road		Micco
Gatwick RH11 OPR		
Date 17/08/2020 16:23	Designed by Thomas-Smith	
File	Checked by	Diamage
Innovyze	Source Control 2020.1	·

Cascade Model Details for Plots 1 to 4 Raingarden 0.5 ls.SRCX

Storage is Online Cover Level (m) 8.010

Tank or Pond Structure

Invert Level (m) 7.560

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 129.0 0.450 129.0

Orifice Outflow Control

Diameter (m) 0.018 Discharge Coefficient 0.600 Invert Level (m) 7.560

Unda Consulting Ltd						Page 1		
Southpoint								
Old Brighton Road								
Gatwick RH11 OPR						Micco		
Date 17/08/2020 16:25	Des	signed (bv T	homas-	Smith			
File	Che	ecked b	- <u>-</u> -			Drainage		
Innovyze	Sou	rce Co	ntro	1 2020	1			
	500			1 2020	• +			
Cascade Summary of Res	ults f	for Plo	+ 9	Rainga	arden 05	ls SRCX		
	<u>urco</u>		0 0	Itariige		10.0101		
Upstream	Out	tflow To			Over	flow To		
Structures								
(Nono) Plots 5 to 6	and car	nort Di	roat	to Pon	d SBCV	(Nono)		
(NONE) FIGES 5 CO 6	anu car	port Di	rect	LO PON	u.SRCA	(NOTIE)		
Storm	Max N	Max M	ax	Max	Status			
Event L	Level De	epth Con	trol	Volume				
	(m)	(m) (l	/s)	(m³)				
15 min Summer 7	.504 0.	.104	0.3	4.0	Flood Risk			
30 min Summer 7	.536 0.	.136	0.3	5.2	Flood Risk			
60 min Summer 7	.565 0.	.165	0.4	6.3	Flood Risk			
120 min Summer 7	7.583 0.	.183	0.4	7.0	Flood Risk			
180 min Summer 7	7.587 0.	.187	0.4	7.1	Flood Risk			
240 min Summer / 360 min Summer 7	7.588 U. 7 587 O	.188 187	0.4	/.1 7 1	Flood Risk			
480 min Summer 7	.583 0.	.183	0.4	6.9	Flood Risk			
600 min Summer 7	.577 0.	.177	0.4	6.7	Flood Risk			
720 min Summer 7	.571 0.	.171	0.4	6.5	Flood Risk			
960 min Summer 7	.559 0.	.159	0.4	6.1	Flood Risk			
1440 min Summer 7	7.538 O.	.138	0.3	5.2	Flood Risk			
2160 min Summer / 2880 min Summer 7	7.513 U. 7 795 O	.113	0.3	4.3	Flood Risk			
4320 min Summer 7	.471 0.	.071	0.2	2.7	Flood Risk			
5760 min Summer 7	.455 0.	.055	0.2	2.1	Flood Risk			
7200 min Summer 7	.446 0.	.046	0.2	1.7	Flood Risk			
8640 min Summer 7	.439 0.	.039	0.2	1.5	Flood Risk			
Storm	Pain	Floode	d Die	charge	Time-Deak			
Event	(mm/hr)	Volume		olume	(mins)			
		(m³)		(m ³)	,			
15 min Summer	138.005	50.	0	4.1	18			
60 min Summer	58 745	± 0. 5 0	0	5.4 7 0	55 62			
120 min Summer	36.008	3 0.	0	8.6	120			
180 min Summer	26.598	в о.	0	9.5	150			
240 min Summer	21.360	0.	0	10.2	180			
360 min Summer	15.683	30.	0	11.2	248			
480 min Summer	12.5/5		0	12.0	316			
720 min Summer	9,192	> 0.	0	13.2	454			
960 min Summer	7.349	ə 0.	0	14.1	588			
1440 min Summer	5.351	L 0.	0	15.3	850			
2160 min Summer	3.888	з O.	0	16.8	1228			
2880 min Summer	3.096	b 0.	U O	17.8	1588			
4320 min Summer 5760 min Summer	2.242	∠ U. I ∩	0	19.3 20 5	2296 3008			
7200 min Summer	1.491	L 0.	- 0	20.0	3744			
8640 min Summer	1.289	θ Ο.	0	22.2	4416			
	1000 0	020						
<u> </u>	©1902-2020 11110Vy2e							

Unda Consulting Ltd Page 2					Page 2	
Southpoint						
Old Brighton Road						
Gatwick RH11 OPR					Micco	
Date 17/08/2020 16:25	Des	igned by	Thomas-	Smith		
	Cho	akod by	moniab		Drainage	
		CKEU Dy		1		
Innovyze	Sou	rce cont	roi 2020	• 1		
<u>Cascade Summary of Res</u>	sults f	or Plot	9 Rainga	rden 0.5 ls.:	<u>SRCX</u>	
Storm Event	Max M Level De	Max Max Ppth Conti (m) (1/)	K Max	Status		
	(111)	() (1/2	5) (111)			
10080 min Summer	7.434 0.	.034 (0.1 1.3	Flood Risk		
15 min Winter	7.517 0.	.117 (0.3 4.5	Flood Risk		
30 min Winter	7.553 0.	.153 (5.8	Flood Risk		
60 min Winter	1.586 0.	.186 (J.4 7.1	Flood Risk		
120 min Winter	7 612 0	.∠∪9 (212 ().4 /.9	riood Kisk		
240 min Winter	7 612 0	212 () <u>4</u> 8.1	Flood Pisk		
360 min Winter	7.609 0	209 ().4 7 9	Flood Risk		
480 min Winter	7.601 0.	.201 (7.7	Flood Risk		
600 min Winter	7.593 0.	.193 (0.4 7.3	Flood Risk		
720 min Winter	7.584 0.	.184 (0.4 7.0	Flood Risk		
960 min Winter	7.566 0.	.166 (0.4 6.3	Flood Risk		
1440 min Winter	7.536 0.	.136 (5.2	Flood Risk		
2160 min Winter	7.503 0.	.103 (3.9	Flood Risk		
2880 min Winter	7.481 0.	.081 (3.1	Flood Risk		
4320 min Winter	7.455 0.	.055 (2.1	Flood Risk		
5760 min Winter	7.441 0.	.041 (0.2 1.6	Flood Risk		
/200 min Winter	7.433 0.	.033 ().1 1.2	Flood Risk		
8640 min Winter	7.429 0.	.029 (Flood Risk		
Storm Event	Rain (mm/hr)	Flooded Volume	Discharge Volume	Time-Peak (mins)		
		(m ³)	(m ³)			
10080 min Summer	1.141	0.0	22.9	5144		
15 min Winter	138.005	5 0.0	4.5	18		
30 min Winter	92.274	1 0.0	6.1	32		
60 min Winter	58.745	5 0.0	7.9	60		
120 min Winter	36.008	3 0.0	9.6	116		
180 min Winter	26.598		10./	100		
240 Min Winter 360 min Winter	15 683	3 0.0	11.4	190		
480 min Winter	12.575	5 0.0	13.5	342		
600 min Winter	10.586	5 0.0	14.2	416		
720 min Winter	9.192	2 0.0	14.8	488		
960 min Winter	7.349	0.0	15.7	626		
1440 min Winter	5.351	0.0	17.2	894		
2160 min Winter	3.888	3 0.0	18.8	1276		
2880 min Winter	3.096	5 0.0	19.9	1644		
4320 min Winter	2.242	2 0.0	21.6	2336		
5760 min Winter	1.781	0.0	23.0	3056		
7200 min Winter	1.491	. 0.0	24.0	3752		
8640 min Winter	1.289	<i>v</i> 0.0	24.9	44U8 5152		
10000 min winter	1.141	. 0.0	23.1	JIJZ		
C	1982-20	020 Inno	vyze			

Unde Conquitting It 1		Dogo 2
Unda Consulting Ltd		rage 3
Southpoint		
Uld Brighton Road		
Gatwick RH11 OPR		Micro
Date 17/08/2020 16:25	Designed by Thomas-Smith	Drainage
File	Checked by	Diamage
Innovyze	Source Control 2020.1	
<u>Cascade Rainfall Det</u>	cails for Plot 9 Raingarden 0.5 ls.S	RCX
Rainfall Model Return Period (years) Region M5-60 (mm) Ratio R Summer Storms	FSR Winter Storms M 100 Cv (Summer) 0.7 England and Wales Cv (Winter) 0.8 20.700 Shortest Storm (mins) 0.358 Longest Storm (mins) 100 Yes Climate Change %	Yes 950 940 15 980 -40
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.016	
	Time (mins) Area From: To: (ha)	
	0 4 0.016	
	0 10.010	
	©1982-2020 Innovyze	

Unda Consulting Ltd	Page 4
Southpoint	
Old Brighton Road	
Gatwick RH11 OPR	Micro
Date 17/08/2020 16:25	Designed by Thomas-Smith
File	Checked by
Innovyze	Source Control 2020.1
Cascade Model Details	for Plot 9 Raingarden 0.5 ls.SRCX
Storage is On	nline Cover Level (m) 7.690
Tank	or Pond Structure
Inve	ert Level (m) 7.400
Depth (m) Are	ea (m ²) Depth (m) Area (m ²)
0.000	38.0 0.290 38.0
Orific	ce Outflow Control
Diameter (m) 0.021 Discharge	e Coefficient 0.600 Invert Level (m) 7.400
©198	32-2020 Innovyze

Unda Consulting Ltd					Page 1
Southpoint					
Old Brighton Road					
Gatwick RH11 OPR					Micco
Date 17/08/2020 16:26	Desig	ned by 1	Thomas-	Smith	
File	Check	ed by			Urainage
Innovyze	Sourc	e Contro	1 2020	1	
			2020	• -	
Cascade Summary of Results	for Pl	ots 5 to	o 6 and	l car port Di	rect to
<u></u>	Pond	.SRCX	<u> </u>	Car porto pr	2000 00
Upstream	L	Ou	tflow To	o Overflow To	
Structure	s				
Plot & Paingarde	n 0 5 1	e SPCY	(None	(None)	
Plots 1 to 4 Raingarde	en 0.5 1	s.SRCX	(NOILE)	(NOILE)	
Storm Ma:	x Max	Max	Max	Status	
Event Lev	el Dept	h Control	Volume		
(m	.) (m)	(1/s)	(m³)		
15 min Summer 6.8	49 0.10	9 0.5	12.1	O K	
30 min Summer 6.8	84 0.14	4 0.5	16.3	0 K	
60 min Summer 6.9	23 0.18	3 0.5	21.1	O K	
120 min Summer 6.9	65 0.22	5 0.5 0 0 5	26.5	Flood Risk	
240 min Summer 7 0	09 0.24	9	29.0	Flood Risk	
360 min Summer 7.0	31 0.29	0 0.5 1 0.5	35.4	Flood Risk	
480 min Summer 7.0	49 0.30	9 0.5	37.9	Flood Risk	
600 min Summer 7.0	62 0.32	2 0.5	39.8	Flood Risk	
720 min Summer 7.0	73 0.33	3 0.5	41.3	Flood Risk	
960 min Summer 7.0	85 0.34	5 0.5 6 0.5	43.2	Flood Risk	
2160 min Summer 7.0	84 0.34	4 0.5	44.7	Flood Risk	
2880 min Summer 7.0	65 0.32	5 0.5	40.2	Flood Risk	
4320 min Summer 7.0	27 0.28	7 0.5	34.9	Flood Risk	
5760 min Summer 6.9	94 0.25	4 0.5	30.3	Flood Risk	
7200 min Summer 6.9	63 0.22	3 0.5	26.2	Flood Risk	
Storm F	Rain F	looded Di	scharge	Time-Peak	
Event (m	m/hr) N	Volume N	/olume	(mins)	
		(m³)	(m³)		
	0 005	0 0	0.2	1.0	
15 min Summer 13 30 min Summer 9	0.005	0.0	∠3.2 31 ∩	19 78	
60 min Summer 5	8.745	0.0	43.0	188	
120 min Summer 3	6.008	0.0	52.7	312	
180 min Summer 2	6.598	0.0	58.4	394	
240 min Summer 2	1.360	0.0	62.5	464	
360 min Summer 1 480 min Summer 1	5.683	0.0	68.5 72 7	586	
600 min Summer 1	0.586	0.0	75.2	802	
720 min Summer	9.192	0.0	75.5	898	
960 min Summer	7.349	0.0	73.8	1052	
1440 min Summer	5.351	0.0	69.6	1442	
2160 min Summer	3.888	0.0	104.9	2088	
4320 min Summer	2.242	0.0	119 7	∠300 2988	
5760 min Summer	1.781	0.0	129.0	3728	
7200 min Summer	1.491	0.0	134.9	4472	
	82-202	1 Innati	70		
	02 202	о типолд	76		

Unda Consulting Ltd					Page 2
Southpoint					
Old Brighton Road					
Gatwick BH11 OPB					
Date $17/08/2020$ 16.26	Design	ad by Th	omas-	Smith	
Filo	Chocko	d by	1011103		Drainage
	Checke		2020	1	
Innovyze	source	Control	2020	• 1	
Canaada Summary of Doculta	for Dlo	+ - 5 + -	6 and	aar part D	irect to
<u>cascade Summary of Results</u>	Pond (<u>is j lu</u> Brcy	0 allu	<u>cai poit D</u>	<u>IIECL LO</u>
	10110.0				
Storm Ma	x Max	Max	Max	Status	
Event Lev	el Depth	Control	Volume		
(m) (m)	(l/s)	(m³)		
ecto min cummor co	24 0 104	0 5	22 5	O K	
10080 min Summer 6 9	08 0.168	0.5	22.3 19.2	OK	
15 min Winter 6.8	62 0.122	0.5	13.6	0 K	
30 min Winter 6.9	01 0.161	0.5	18.4	O K	
60 min Winter 6.9	46 0.206	0.5	24.0	Flood Risk	
120 min Winter 6.9	94 0.254	0.5	30.3	Flood Risk	
180 min Winter 7.0	21 0.281	0.5	34.1	Flood Risk	
240 min Winter 7.0 260 min Winter 7.0	42 0.302	0.5	36.9	Flood Risk	
480 min Winter 7.0	92 0 352	0.5	41.3 44 1	Flood Risk	
600 min Winter 7.1	05 0.365	0.5	46.0	Flood Risk	
720 min Winter 7.1	15 0.375	0.5	47.5	Flood Risk	
960 min Winter 7.1	29 0.389	0.5	49.6	Flood Risk	
1440 min Winter 7.1	43 0.403	0.5	51.7	Flood Risk	
2160 min Winter 7.1	36 0.396	0.5	50.7	Flood Risk	
2880 min Winter /.1 4320 min Winter 7.0	1/ U.3// 60 0 320	0.5	4/.8	Flood Risk	
5760 min Winter 7.0	11 0.271	0.5	32.6	Flood Risk	
7200 min Winter 6.9	61 0.221	0.5	25.9	Flood Risk	
8640 min Winter 6.9	16 0.176	0.5	20.2	ОК	
				1	
Storm P	(ain Fl m/br) Vo	ooded Dis	charge	(mine)	
	,,	(m ³)	(m ³)	(111115)	
8640 min Summer	1.289	0.0	139.9	5192	
10080 min Summer	1.141 9 005	0.0	143.9	5896	
10 min Winter 13 30 min Winter 9	2.274	0.0	20.U 34 4	19 121	
60 min Winter 5	8.745	0.0	48.2	240	
120 min Winter 3	6.008	0.0	59.1	376	
180 min Winter 2	6.598	0.0	65.3	470	
240 min Winter 2	1.360	0.0	69.7	550	
360 min Winter 1	5.683	0.0	75.4	700	
480 min Winter 1 600 min Winter 1	∠.3/5 0 586	0.0	/6.6 75 8	/ 8U 856	
720 min Winter	9.192	0.0	74.8	934	
960 min Winter	7.349	0.0	73.0	1084	
1440 min Winter	5.351	0.0	69.9	1430	
2160 min Winter	3.888	0.0	117.5	2080	
2880 min Winter	3.096	0.0	124.4	2676	
4320 min Winter	2.242	0.0	131.7	3372	
7200 min Winter	1.491	0.0	151 2	4040	
8640 min Winter	1.289	0.0	156.8	5464	

Unda Consulting Ltd		Page 3
Southpoint		
Old Brighton Road		
Gatwick RH11 OPR		Micro
Date 17/08/2020 16:26	Designed by Thomas-Smith	
File	Checked by	Diamage
Innovyze	Source Control 2020.1	

Cascade Summary of Results for Plots 5 to 6 and car port Direct to Pond.SRCX

Storm	Max	Max	Max	Max	Status
Event	Level	Depth	Control	Volume	
	(111)	(111)	(1/3)	(111)	

10080 min Winter 6.879 0.139 0.5 15.7 O K

Sto	cm	Rain	Flooded	Discharge	Time-Peak
Eve	nt	(mm/hr)	Volume	Volume	(mins)
			(m³)	(m³)	
10080 min	Winter	1.141	0.0	161.4	6152

Unda Consulting Ltd		Page 4
Southpoint		
Old Brighton Road		
Gatwick RH11 OPR		Micro
Date 17/08/2020 16:26	Designed by Thomas-Smith	
File	Checked by	Diamage
Innovyze	Source Control 2020.1	
Cascade Rainfall Details for Pl	ots 5 to 6 and car port Direct to	Pond.SRCX
Rainfall Model	FSR Winter Storms Y	es
Return Period (years)	100 Cv (Summer) 0.7	50

100	WINCE DEDING		1 01(I HOUCI	narnrar		
0.750	(Summer)	Cv		100		(years)	Period	urn
0.840	(Winter)	Cv		and Wales	England	Region		
15	m (mins)	Stor	Shortest	20.700		-60 (mm)	M5-	
10080	m (mins)	Stor	Longest	0.358		Ratio R	:	
+40	Change %	mate (Clin	Yes		Storms	Summer	

<u>Time Area Diagram</u>

Total Area (ha) 0.047

Time (mins) Area From: To: (ha)

0 4 0.047

Unda Consulting Ltd						Page 5
Southpoint						
Old Brighton Road						
Gatwick RH11 OPR	-					Micro
Date 1//08/2020 16:20)	Designed	l by Tho: hu	mas-Smith		Drainage
File		Cneckea	by lontrol	2020 1		
тшоууге		Source C	.0111101	2020.1		
<u>Cascade Model Deta</u> :	ils for Plot	<u>ts 5 to 6</u>	and car	<u>r port Dir</u>	ect to	<u>Pond.SRCX</u>
	Storage is O	nline Cove:	r Level (1	m) 7.240		
	<u>Tank</u>	or Pond S	Structur	<u>e</u>		
	Inve	ert Level (m) 6.740			
Depth (m) Area (m ²)	Depth (m) Are	ea (m²) Dej	oth (m) A	rea (m²) De	pth (m) .	Area (m²)
0.000 105.0	0.500	166.6	0.501	185.0	1.000	264.2
H	ydro-Brake®	<u>Optimum</u>	Outflow	Control		
	Unit	Reference	MD-SHE-C	038-5000-05	00-5000	
	Desig	n Head (m)			0.500	
	Design	Flow (1/s)		Cal	0.5	
		Objective	Minimis	cai se upstream	storage	
	A	pplication			Surface	
	Sump	Available			Yes	
	Dia Invert	meter (mm)			38 6 740	
Minimum Ou	itlet Pipe Dia	meter (mm)			75	
Suggeste	ed Manhole Dia	meter (mm)			1200	
	Control Po	oints	Head (m)	Flow (l/s)		
De	sign Point (Ca	alculated)	0.500	0.5		
]	Flush-Flo™	0.164	0.5		
Mo	on Elou ottor l	Kick-Flo®	0.331	0.4		
ме	an Flow over i	Head Kange	-	0.4		
The hydrological calculations have been based on the Head/Discharge relationship for the Hydro-Brake® Optimum as specified. Should another type of control device other than a Hydro-Brake Optimum® be utilised then these storage routing calculations will be invalidated						
Depth (m) Flow (l/s)	Depth (m) Flow	w (l/s) Deg	oth (m) F	low (l/s) D	epth (m)	Flow (l/s)
0.100 0.5	1.200	0.7	3.000	1.1	7.000	1.6
0.200 0.5	1.600	0.8	3.500 4.000	1 3	8.000	1./ 1.8
0.400 0.5	1.800	0.9	4.500	1.3	8.500	1.8
0.500 0.5	2.000	0.9	5.000	1.4	9.000	1.9
0.600 0.5	2.200	1.0	5.500	1.5	9.500	1.9
1.000 0.7	2.400 2.600	1.0	6.500	1.6		
		I		I		
	©198	32-2020 I	nnovyze			

Unda Consulting Ltd						Page 1
Southpoint	Atten	uation	n Tan	k: Plo	ts 10-24	
Old Brighton Road	Devel	opment	of	24 Dwe	llings	
Gatwick RH11 OPR	89594	-Ecote	ctur	e-OldL	oomMill	Micco
Date 17/08/2020	Desig	ned by	7 TS			
File PLOTS 10 TO 24 DIRECT T	Check	ed by	EJ			Digiliga
Innovyze	Sourc	e Cont	rol	2020.1		
<u>Summary of Results f</u>	<u>Eor 100</u>) <u>year</u>	Retu	rn Per	iod (+40%)	
Storm	Max M	lax 1	lax	Max	Status	
Event I	Level De	epth Com	ntrol	Volume		
	(111) ((111) (1	L/S)	(
15 min Summer 4	4.360 0.	.250	0.4	29.9	O K	
30 min Summer 4	4.442 0.	.332	0.4	39.9	O K	
60 min Summer 4	4.529 0.	.419	0.4	50.3	ОК	
120 min Summer 4	±.0⊥⊃ U. 4.661 0	551	0.4 0.5	60.6 66 1	OK	
240 min Summer 4	4.690 0.	.580	0.5	69.6	O K	
360 min Summer 4	4.730 0.	.620	0.5	74.3	ΟK	
480 min Summer 4	4.753 0.	.643	0.5	77.1	O K	
600 min Summer 4	4.767 0.	.657	0.5	78.8	O K	
720 min Summer 4	4.775 0.	.665	0.5	79.8	O K	
960 min Summer 4	4./80 0. 4.760 0	.670	0.5	80.4 70.1	OK	
2160 min Summer 4	4.746 O.	.636	0.5	79.1	OK	
2880 min Summer 4	4.721 0.	.611	0.5	73.3	0 K	
4320 min Summer 4	4.673 0.	563	0.5	67.6	O K	
5760 min Summer 4	4.628 0.	.518	0.5	62.2	O K	
7200 min Summer 4	4.587 0.	.477	0.4	57.2	O K	
8640 min Summer 4	4.548 U. 1 512 O	.438	0.4	52.6 48.2	O K O K	
15 min Winter 4	4.390 0.	. 280	0.4	33.6	O K	
30 min Winter 4	4.483 0.	.373	0.4	44.7	ОК	
Storm	Rain F	looded	Disch	arge T	ime-Peak	
Event (r	mm/hr) '	Volume	Vol	ume	(mins)	
		(m³)	(m	³)		
15 min Summer 17	38 005	0 0		28 7	19	
30 min Summer 9	92.274	0.0		35.1	34	
60 min Summer 5	58.745	0.0		50.8	64	
120 min Summer 3	36.008	0.0		61.8	124	
180 min Summer 2	26.598	0.0		67.6	184	
240 min Summer 2 360 min Summer 2	21.360 15 692	0.0		/0.6	242	
480 min Summer 1	12.575	0.0		72.5	482	
600 min Summer	10.586	0.0		72.5	602	
720 min Summer	9.192	0.0		72.4	722	
960 min Summer	7.349	0.0		72.2	960	
1440 min Summer	5.351	0.0	-	72.0	1256	
2160 min Summer	3.888 3 nge	0.0	1	22.U	164U 2020	
4320 min Summer	2.242	0.0	1	26.0	2856	
5760 min Summer	1.781	0.0	1	49.8	3688	
7200 min Summer	1.491	0.0	1	56.8	4536	
8640 min Summer	1.289	0.0	1	62.7	5352	
10080 min Summer	1.141	0.0	1	.67.8	6152	
30 min Winter 1	92.274	0.0		35.3	19 34	
		0.0			<u> </u>	
©19	82-2020	0 Inno	vyze			

Unda Consulting Ltd							Page 2
Southpoint		At	tenua	ation T	ank: P	lots 10-24	
Old Brighton Road		De	evelop	pment o	f 24 D	wellings	
Gatwick RH11 OPR		89	9594-1	Ecotect	ure-Ol	dLoomMill	Micro
Date 17/08/2020		De	esigne	ed by T	S		
File PLOTS 10 TO 24	DIRECT T	Ch	necke	d by EJ			טומוומע
Innovyze		Sc	ource	Contro	1 2020	.1	
Cummo rea	of Doculto	for	100	NOAR DO	turn D	artial (+40%)	
<u>Summary</u>	OI RESUILS	LOL	100	<u>yeai ke</u>	<u>turn r</u>	eriou (+40%)	
	Storm M	ax	Max	Max	Max	Status	
	Event Le	vel	Depth	Control	Volume		
	(m)	(m)	(l/s)	(m³)		
60	min Winter 4.	581	0.471	0.4	56.5	ОК	
120	min Winter 4.	678	0.568	0.5	68.1	ОК	
180	min Winter 4.	730	0.620	0.5	74.4	O K	
240	min Winter 4.	764	0.654	0.5	78.5	O K	
360	min Winter 4.	811	0.701	0.5	84.1	Flood Risk	
480	min Winter 4.	839	0.729	0.5	87.5	Flood Risk	
600	min Winter 4.	858	0.748	0.5	89.7	Flood Risk	
720	min Winter 4.	870	0.760	0.5	91.2	Flood Risk	
960	min Winter 4.	881	0.771	0.5	92.5	Flood Risk	
1440	min Winter 4.	875	0.765	0.5	91.8	Flood Risk	
2160	min Winter 4.	845	0.735	0.5	88.2	Flood Risk	
2880	min Winter 4.	814	0.704	0.5	84.5	Flood Risk	
4320	min Winter 4.	746	0.636	0.5	76.3	O K	
5760	min Winter 4.	680	0.570	0.5	68.4	0 K	
7200	min Winter 4.	619	0.509	0.4	61.0	0 K	
8640	min Winter 4.	561	0.451	0.4	54.1	0 K	
10080	min winter 4.	506	0.396	0.4	4/.5	UK	
	Storm	Rai	n Flo	ooded Dis	scharge	Time-Peak	
	Event (nm/n	(II) VC	ume ∨ 	orume	(mins)	
			(m")	(m°)		
60) min Winter	58.7	45	0.0	56.7	64	
120) min Winter	36.0	08	0.0	68.3	122	
180) min Winter	26.5	98	0.0	72.2	180	
240) min Winter	21.3	60	0.0	73.2	240	
360) min Winter	15.6	83	0.0	73.9	356	
480) min Winter	12.5	75	0.0	74.4	474	

74.7 600 min Winter 10.586 0.0 590 0.0 720 min Winter 9.192 75.1 702 960 min Winter 7.349 0.0 75.9 930 5.351 76.2 1440 min Winter 0.0 1358 2160 min Winter 3.888 0.0 136.2 1712 2880 min Winter 3.096 0.0 141.3 2164 4320 min Winter 2.242 0.0 132.5 3108 1.781 5760 min Winter 0.0 167.8 3984 7200 min Winter 1.491 175.6 4896 0.0 1.289 5712 8640 min Winter 0.0 182.2 10080 min Winter 1.141 0.0 187.9 6648

Unda Consulting Ltd		Page 3
Southpoint	Attenuation Tank: Plots 10-24	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirro
Date 17/08/2020	Designed by TS	
File PLOTS 10 TO 24 DIRECT T	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

Rainfall Model	FSR	Winter Storms Yes
Return Period (years)	100	Cv (Summer) 0.750
Region	England and Wales	Cv (Winter) 0.840
M5-60 (mm)	20.700	Shortest Storm (mins) 15
Ratio R	0.358	Longest Storm (mins) 10080
Summer Storms	Yes	Climate Change % +40

<u>Time Area Diagram</u>

Total Area (ha) 0.117

Time (mins) Area From: To: (ha)

0 4 0.117

Unda Consulting Ltd								Page	2 4
Southpoint		Atten	uation Ta	ank:	Plots	10-24	ł		
Old Brighton Road		Devel	opment of	E 24 1	Dwell	ings			
Gatwick RH11 0PR		89594	-Ecotecti	ire-0	ldLoo	mMill		Mic	
Date 17/08/2020		Desig	ned by TS	5					
File PLOTS 10 TO 24 1	DIRECT T	. Check	ed by EJ					Ulc	IIIIage
Innovyze		Sourc	e Control	202	0.1				
Innovyze Source Control 2020.1 <u>Model Details</u> Storage is Online Cover Level (m) 5.110 <u>Tank or Pond Structure</u> Invert Level (m) 4.110 Depth (m) Area (m ²) Depth (m) Area (m ²) 0.000 120.0 1.000 120.0 <u>Hydro-Brake® Optimum Outflow Control</u> Unit Reference MD-SHE-0036-6000-1000-6000 Design Head (m) 1.000 Design Flow (1/s) 0.6 Flush-Flo ²⁴ Calculated Objective Minimise upstream storage Application Surface Sump Available Yes Diameter (mm) 36 Invert Level (m) 4.110									
Suggest	ed Manhole D Control esign Point)iameter (Points (Calculate	mm) Head (r	n) Flo	w (1/s 0.	12 •) 6	00		
		Flush-Fl Kick-Fl	Lo™ 0.1: Lo® 0.3	26 17	0.	4			
Me	an Flow over	r Head Rar	nge	_	0.	5			
The hydrological calcu Hydro-Brake® Optimum a Hydro-Brake Optimum® b invalidated	lations have s specified. e utilised t	e been bas Should chen these	ed on the another ty storage r	Head/I pe of outing	Discha: contro g calcu	rge rel ol devi ulation	atio ce o s wi	onship other ill be	for the than a
Deptn (m) Flow (1/s)	Deptn (m) Fi	10W (1/S)	Deptn (m)	F.TOM	(1/S)	Deptn	(m)	FIOM	(1/S)
$\begin{array}{ccccc} 0.100 & 0.4 \\ 0.200 & 0.4 \\ 0.300 & 0.4 \\ 0.400 & 0.4 \\ 0.500 & 0.4 \\ 0.600 & 0.5 \\ 0.800 & 0.5 \\ 1.000 & 0.6 \end{array}$	1.200 1.400 1.600 1.800 2.000 2.200 2.400 2.600	0.6 0.7 0.8 0.8 0.9 0.9 0.9	3.000 3.500 4.000 4.500 5.000 5.500 6.000 6.500		1.0 1.0 1.1 1.2 1.2 1.3 1.3 1.4	7. 7. 8. 8. 9. 9.	000 500 500 500 500		1.4 1.5 1.6 1.6 1.7
	©1	.982-2020) Innovyz	e					

Factual Soakage Test Report

Project Name: Old Loom Mill, Hailsham Location: Ersham Road, Hailsham, East Sussex Client: Aitco Ltd. Project ID: J14496 Report Date: 8 July 2020

Report Issue: 1

Author	C Lennard BEng (Hons)	$\mathbf{\Phi}$
Check / Review	J N Race BSc MSc CGeol FGS	JAR

For and on behalf of Southern Testing Laboratories Limited

DOCUMENT HISTORY AND STATUS

Issue No.	Date	Purpose or Status	Author	Check / Review
1	08/07/2020	First Issue	CL	JNR

Copyright © 2020 Southern Testing Laboratories Ltd.

TABLE OF CONTENTS

Α	INTE	RODUCTION	1
	1	Authority	1
	2	Location	1
	3	Background & Objectives	1
	4	Scope	1
В	SITE	E SETTING	1
	5	Geology	1
	6	Site Description	2
С	GRC	OUND INVESTIGATION	2
	7	Strategy and Method	2
	8	Weather Conditions	3
	9	Soils as Found	3
	10	Groundwater Observations	3
D	TES	ST RESULTS	3
	11	Soakaways	3

TABLE OF APPENDICES

APPENDIX A
Site Plans, Trial Pit Logs and Trial Pit Photographs
APPENDIX B
Field Sampling and In-Situ Test Methods and Results
APPENDIX C

Site Photographs

INTRODUCTION Α

1 Authority

Our authority for carrying out this work is contained in a Southern Testing Project Order form (dated 18 June 2020) completed by Mr C Frost of Future Planning and Development Ltd. On behalf of Aitco Ltd.

2 Location

The site is located approximately 2km to the south of Hailsham town centre. The National Grid Reference of the site is TQ 58820 07250. The site location is indicated on Figure 1 within Appendix A.

3 **Background & Objectives**

It is proposed to redevelop the site with residential properties, which includes areas of proposed attenuation ponds/swales. The object of this investigation was to assess the soakage potential of soils on site.

4 Scope

This factual report presents our exploratory hole logs and test results only. Contamination and geotechnical issues are not considered in this report.

A UXO risk assessment was not requested within our brief for the investigation.

As with any site there may be differences in soil conditions between exploratory hole positions.

This report is not an engineering design and the figures and calculations contained in the report should be used by the Engineer, taking note that variations will apply, according to variations in design loading, in techniques used, and in site conditions. Our figures therefore should not supersede the Engineer's design.

The site investigation has been completed with reference to BS 5930[1] and BS 10175[2]

The findings and opinions conveyed via this investigation report are based on information obtained from a variety of sources as detailed within this report, and which Southern Testing Laboratories Ltd. believes are reliable. Nevertheless, Southern Testing Laboratories Ltd. cannot and does not guarantee the authenticity or reliability of the information it has obtained from others.

The investigation was conducted and this report has been prepared for the sole internal use and reliance of Aitco Ltd. and their appointed Engineers. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Southern Testing Laboratories Ltd. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

The recommendations contained in this report may not be appropriate to alternative development schemes.

B SITE SETTING

5 Geology

The British Geological Survey 1:50,000 map of the area (No. 319/334 - Lewes & Eastbourne) indicates that the site geology consists of the Weald Clay Formation.

5.1.1 Weald Clay Formation

The Weald Clay Formation comprises dark grey thinly-bedded shales and mudstones with subordinate siltstones, sandstones (including the Horsham Stone Member), shelly limestones and clay ironstones. The mudstones weather to yellow and brown clays. Conspicuous bands of red clay also occur, usually in close association with sandstone beds.

The clays have often been worked for various purposes, and the clay ironstone, a low-grade iron ore, was worked from sporadic beds across the Wealden area. The steep sides of the degraded remains of former workings are usually unstable. Other workings have been filled with a variety of materials.

This formation is known to contain pyrite.

6 Site Description

The subject site, which is approximately rectangular in shape and extends to around 145×95m, comprises a vacant mill, together with numerous outbuildings. The site is understood to have most recently been used for a number of commercial/retail purposes including a tearoom, fabric shop and craft units.

Approximately half of the site is covered by buildings, some of which were noted to have corrugated asbestos cement roofs, and hardstanding areas, which include concrete and compacted granular material. The remainder of the site comprises grassed areas, overgrown shrubs/bushes and numerous semi-mature to mature trees.

Access was not available within the buildings, however, some areas of rubbish/fly-tipped materials were observed within some external hardstanding areas, most notably in the centre/west of the site.

The site is set within a predominantly rural area, which comprises fields and scattered residential/commercial properties, together with the Cuckoo Trail (a former railway line) forming the western site boundary.

The site is largely flat and level, although ground levels were noted to fall gently by approximately 1-2m in the north of the site, towards to the northern boundary.

6.1 Site Photographs

A series of photographs showing the site at the time of our investigation is included in Appendix C.

С **GROUND INVESTIGATION**

7 **Strategy and Method**

The strategy adopted for the intrusive investigation comprised the following:

Activity / <i>Method</i>	Purpose	Max Depth (bgl)	Installations / Notes
TP1-TP4 8T Tracked Excavator	Trial pits to investigate the shallow ground conditions and allow for the preliminary assessment of soakage potential using the BRE365 method, at locations agreed with the client.	2.8-3.0m	One day of testing undertaken as requested by the client's engineer.

Access was slightly restricted due to the presence of buildings, underground/overhead services and rubbish/fly-tipped waste etc. The exploratory hole locations are shown on Figure 2 in Appendix A.

In-situ test and sampling method descriptions employed are given in Appendix B together with the test results.

Weather Conditions 8

The fieldwork was carried out on 26th June 2020, at which time the weather was dry and sunny. Whilst in general, the winter of 2019/20 had been wetter than average, based on rainfall records from the Southern Water region, the 3 month period prior to the soakage testing was drier than average (see table below).

Month	Long Term Average Rainfall	Actual Rainfall	Actual vs Average Percentage
April 2020	51.8mm	47.2mm	90%
May 2020	52.8mm	6.7mm	15%
June 2020	53.0mm	44.8mm	85%

* Data source: https://www.southernwater.co.uk/water-for-life/regional-rainfall

9 Soils as Found

The soils encountered are described in detail in the attached exploratory hole logs (Appendix A), but in general comprised a covering of Topsoil (0.3-0.4m) over stiff to very stiff, silty/plastic clay, with occasional ironstone gravel. Within trial pit TP3, carried out in an area of hardstanding composed of compacted granular, made ground was encountered to a depth of approximately 0.7m(bgl), which included frequent bricks and brick fragments, timber, plastic, plywood and rope etc.

Groundwater Observations 10

During the fieldwork, groundwater was not encountered in any of the trial pits prior to soakage testing.

TEST RESULTS D

11 Soakaways

Soakage Test Results 11.1

The BRE paper DG365 [3] describes a method for site testing to determine soil infiltration rates at the proposed site of a soakaway. The in-situ test method is described in Appendix B.

A total of four soakage tests were carried out across the site, at the locations shown on the attached site plan Figure 2, Appendix A. The full results of the soakage tests are presented within Appendix B.

For design purposes, the DG365, states that each pit should be allowed to drain three times to near empty, with filling on the same or consecutive days. However, as requested by the client's engineer, only a single day of testing was requested as a preliminary assessment of the soakage potential and given the very poor permeabilities anticipated due to the mapped presence of clay soils. The infiltration rate from each trial hole is summarised in the table below.

Test ID	Test Depth (bgl)	Design Infiltration Rate		Notes
		ℓ/m²/minute	m/sec	
TP1	0.94-3.00m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 286 mins
TP2	0.97-2.90m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 310 mins
TP3	0.98-3.00m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 248 mins
TP4	0.98-2.80m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 219 mins

Negligible infiltration was measured during the 219-310 minutes of the testing undertaken in each trial pit.

11.2 General Guidance on Design of Soakaways

Any soakaway/drainage scheme may require the approval of the Environment Agency and Building Control.

Soakaways are used to store the immediate surface water run-off from hard surfaced areas, such as roof or carparks, and allow for efficient infiltration into the adjacent soil. They should be designed to discharge their stored water sufficiently quickly to provide the necessary capacity to receive run-off from a subsequent storm. The time taken for discharge depends upon the soakaway shape and size, and the surrounding soil's infiltration characteristics.

Groundwater levels can vary considerably from season to season and year to year, often rising in wet or winter weather, and falling in periods of drought. As such, a high groundwater table may affect the storage capacity of soakaways. In addition, it should be noted that an unsaturated zone may be required between the base of soakaways and the groundwater table, by the Environment Agency. Longer term monitoring may be required to establish actual groundwater levels as part of the planning approval process.

REFERENCES

- [1] BSI Standards, "BS 5930 Code of practice for ground investigations," 2015.
- [2] BSI Standards, "BS10175 Investigation of potentially contaminated sites Code of practice," 2013.
- [3] Building Research Establishment (BRE), "DG365 Soakaway Design," 2016.
- [4] BSI Standards, "BS 3882:2015 Specification for Topsoil," 2015.
- [5] CIRIA, "C574 Engineering in Chalk," 2002.
- [6] R. N. Mortimore, Logging the Chalk, 2014.

APPENDIX A

Site Plans, Trial Pit Logs and Trial Pit Photographs

8.52 	COURSE DE LE COURS	€ 31 -22 0MSS ● ^{5.83}	▲ IP1 , • 5.4 • 5.49 • 5.49 • 5.49 • 5.49 • 5.49 • 5.49 • 5.49 • 5.49
NB:	Positions of Boreholes and/or Trial Pits are only indicative unless dimensioned		
Site:	Old Loom Mill, Hailsham	STL: J14496	Fig No: 2
Date:	26 June 2020	Soakage Test Location P	an (not to scale)
S	outhern TestingSouthern Testing: Keeble House, Stuart Way, East Grinstead, West Sussex RH19 4QA ST Consult: Twigden Barns, Brixworth Road, Creaton, Northampton NN6 8NNST Consult		

Key to Exploratory Hole Logs, Plans and Sections													
Backfill Symbols		Pipe Symbols		Principal Soil Types		Principal Rock Types		Drilling Records					
Arisings		Plain Pipe		Topsoil	****	Mudstone	\equiv	Water Strike	∇				
Concrete		Slotted Pipe	E	Made Ground	***	Claystone	=	Depth Water Rose	T				
Blacktop	*****	Piezometer	I	Clay	$\left[1 \right]$	Siltstone	× × × × × ×	Total Core Recovery (%) [TCR]					
Bentonite		Piezometer Tip		Silt	(XX: XXX	Sandstone	:::	Solid Core Recovery (%) [SCR]					
Gravel Filter		Filter Tip	Ħ	Sand		Limestone	+	Rock Quality Index (%) RQD]					
Sand Filter		Extensometer	Х	Gravel		Chalk	, Ľp	Fracture Index (fractures / m) [FI]					
		Inclinometers	8	Peat	یلاد مالاد ماد								

All soil and rock descriptions are in general accordance with BS5930 2015, BS EN ISO 14688-1:2002+A1:2013 and BS EN ISO 14689-1:2003. Chalk descriptions are also based on CIRIA C574 and "Logging the Chalk – R.N. Mortimer 2015". The Geology Code is only provided where a positive identification of the sample strata has been made.

	Location / Method Identifiers
вн	Borehole (undefined)
СР	Cable Percussive
RC	Rotary Core
RO	Rotary Open Hole
ODC	Rotary Odex/Symmetrix drilling cased
CP+RC	Cable Percussive to Rotary Core
SNC	Sonic
CFA	Continuous Flight Auger
FA	Flight Auger
VC	Vibro Core
WLS+RC	Windowless (Dynamic) Sampler to Rotary Core
WLS	Windowless Sampler
WS	Window Sampler
НА	Hand Auger
С	Road / Pavement Core
IP	Inspection Pit (Hand Excavation)
ТР	Trial Pit (Machine Excavated)
OP	Observation Pit (Supported Excavation Hand or Machine)

	In-situ Test Location / Method
DP	Dynamic Probe
СРТ	Cone Penetration Test
CBR	In-situ CBR Test
DCP	CBR using Dynamic Cone Penetrometer
CBRT	CBR using TRL Probe
РВ	Plate Bearing Test
SPT (S)	Standard Penetration Test (Split Barrel Sampler)
SPT (C)	Standard Penetration Test (Solid Cone)
N	SPT Result
-/-	Blows/Penetration (mm) after seating drive
-*/-	Total Blows / Penetration (mm)
()	Extrapolated Value
PPT	Perth Penetration (In-House Method - Equivalent N Value)
HP / UCS	Strength from Hand Penetrometer (kN/m ²)
IVN	Strength from Hand Vane ((kN/m²) P = peak, R = residual
PID	Photo Ionisation Detector (ppm)
MEXE	Mexi-Cone CBR (%)

ST Consult

Environmental & Geotechnical

	Samples / Test Type									
В	Bulk Sample									
BLK	Block Sample									
С	Core Sample									
CBRS	CBR Mould Sample									
D	Small Disturbed Sample									
ES	Environmental Sample (Soil)									
EW	Environmental Sample (Water)									
GS	Environmental Sample (Gas)									

Samples / Test Type								
SPTLS	Standard Penetration Test Split Barrel Sample							
TW	Thin Wall Push In Sample (e.g. Shelby Sampler)							
U	Undisturbed Open Drive Sample (blows to take)							
UT	Thin Wall Undisturbed Open Drive Sample (blows to take)							
W	Water Sample (Geotechnical)							
SP	Sample from Stockpile							
Р	Piston Sample							
AMAL	Amalgamated Sample							

Sou	uthe	rn Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP1		
www.southerntesting.co.uk tel:01342 333100 www			v.stconsult.co	uk tel:01604 5000.	20	26/06/2020		J14496	8T Tracked	Sheet 1 of 1		
Project Na	ame:	Old Loom Mill, Hai	lsham		Rema	arks:	Co-ordi	nates:	Level (m AOD): 6.70	Logger:	_	
Location:		Ersham Road, Hails	sham, E	ast Sussex	1. BR	E365 Sc	akage Test Pit.	om supplied site	survey drawing			
Client:		Aitco Ltd			2. Gro	Junu le	ver interpolated in	om supplied site	sulvey ulawilig.			
Sa	mples an	d Insitu Testing	Level	Thickness	Logond	Depth		Stratum Dag	ariation		-	
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)	Light grouich h	stratum Desi			_	
0.50	НР	UCS(kPa)=500.00	6.3	(0.40)		0.40	CLAY.	ff, greyish brown	and orange brown	, silty		
						-	[0.4-0.8m: Soils desig	ccated]			-	
1.00	HP	UCS(kPa)=150.00	5.6	(0.70)			[Off-white silty calca	reous lenses at appro	x. 0.8m]	1 -		
							Very stiff, light CLAY.	grey and light ye	llowish brown, pla	stic	_	
2.00	НР	UCS(kPa)=160.00					[Becoming brown an	d light blue grey belo	ow approx. 1.5m]	2 -		
3.00	НР	UCS(kPa)=200.00		37			3.00	[With occasional len: ironstone gravel belo	ses of dark brown/bla w approx. 2.6m] Pit terminated a	ack, fine to medium, an	ngular, 3 -	
5.00			0.7			0.00		Pit terminated a	at 3.00m.	3	_	
										4 -		
Pi	t Dim	ension (m)			Pit Sta	ability:		Water Strikes:				
Width	:	0.45	Trial pit	t stable du	ring exc	avation		Trial pit dry.			-	
Length	:	1.50										
Depth: 3.00												

Southern Testing ST Consult						Start -	End Date:	Project ID:	Machine Type:	TP2	
www.southe	erntesting.c	:o.uk tel:01342 333100 www	v.stconsult.co.	uk tel:01604 50002	0	26/	06/2020	J14496	8T Tracked	Sheet 1	of 1
Project Na	ame:	Old Loom Mill, Hail	sham		Rema	Co-ordinates:Level (m AOD):LogLemarks:7.800					r:
Location:		Ersham Road, Hails	ham, Ea	ast Sussex	1. BR	BRE365 Soakage Test Pit.					
Client:		Aitco Ltd					·		, 0		
Sa	mples ar	nd Insitu Testing	Level	Thickness	egend	Depth		Stratum Des	cription		
Depth (m)	Туре	Results	(m AOD)	(m) '		(m bgl)	Light brown fr	riable silty CLAY	with frequent root	lets	
2.00	нр	UCS(kPa)=180.00	7.5 7.1 4.9	(0.30)		0.30	Light brown, fr (TOPSOIL). Very stiff, brow with frequent gravel. Stiff, grey and I [1.8-2.2m: Light grey [With very occasiona	riable, silty CLAY, vn, desiccated, sli fine to medium a brown, plastic CL rand light yellowish f rand light yellowish f al polished fissure sur	with frequent root	lets LAY, one m]	
											4 -
Pi	t Dim	ension (m)		I	Pit Sta	ability:			Water Strikes:		
Width	:	0.45	Trial pit	stable dur	ing exc	avation		Trial pit dry.			
Length):	1.60			5			. ,			
Depth	:	2.90									
		=-= =									

Southern Testing ST				nsult≡		Start -	End Date:	Project ID:	Machine Type:	ТРЗ	
www.southe	rntesting.c	:o.uk tel:01342 333100 www	v.stconsult.co	uk tel:01604 5000.	20	26/	06/2020	J14496	8T Tracked	Sheet 1	of 1
Project Na	ame:	Old Loom Mill, Hai	Loom Mill, Hailsham			Co-ordinates:Level (m AOD):semarks:6.30			Logger CL	r:	
Location: Ersham Road, Hail			ham, E	ast Sussex	1. BR	E365 Sc	bakage Test Pit.	om supplied site	survey drawing		
Client:		Aitco Ltd			2. 010	Junu ie			, survey urawing.		
Sa	mples ar	d Insitu Testing	Level	Thickness	egend	Depth		Stratum Dec	cription		
Depth (m)	Туре	Results	(m AOD)	(m)	xxxxxxx	(m bgl)	Light grevish n	ink slightly silty	very sandy fine to	coarse	
0.70	HP	UCS(kPa)=120.00	6.1 5.6	(0.20)		0.20	angular, limest Dark brown, ve brick fragment GROUND). Firm to stiff, lig	one GRAVEL (sub ery sandy CLAY, w s, timber, plastic, ght grey and light	base). ith frequent bricks plywood and rope yellowish brown, s	and (MADE	
1.00	HP	UCS(kPa)=90.00					[0.7-1.3m: In western very silty CLAY]	n third of pit - pocket	of soft to firm, dark g	rey, organic,	
1.50	НР НР	UCS(kPa)=200.00 UCS(kPa)=110.00		(2.30)			[1.8-2.5m: Very silty]				2
			3.3			3.00		Pit terminated a	at 3.00m.		3
											4
Pi	t Dim	ension (m)			Pit Sta	ability:			Water Strikes:		
Width	:	0.45	Trial pit	t stable du	ring exc	avation		Trial pit dry.			
Length	:	1.40									
Depth	:	3.00									

Southern Testing ST				nsult■		Start -	End Date:	Project ID:	Machine Type:	TP4	
www.southe	rntesting.c	:o.uk tel:01342 333100 www	v.stconsult.co.	uk tel:01604 500020	0	26/	06/2020	J14496	8T Tracked	Sheet 1 o	of 1
Project Na	ame:	Old Loom Mill, Hail	sham		Rema	emarks: Co-ordinates: Level (m AOD): Log					:
Location:	ast Sussex	1. BRI	E365 Sc	akage Test Pit.							
Client:		Aitco Ltd			2. Gro		ver interpolated in	om supplied site	e survey drawing.		
Sai	mples ar	and Insitu Testing Level Thickness				Depth		Stratum Dag	ariation		
Depth (m)	Туре	Results	(m AOD)	(m) L	egena XXXXXX	(m bgl)	Brown voru cil	Stratum Des		lont	
1.00 2.00 2.80	HP	UCS(kPa)=120.00	5.3	(0.40)		0.40	Brown, very sil rootlets (TOPS Firm to stiff, or with occasiona [1.5-1.8m: Orange an medium, extremely to [Becoming light grey [Becoming light grey [With occasional lem ironstone gravel belo	Ity, friable, very si OIL). range brown and al polished fissure nd brownish orange, weak, mudstone grav rand light yellowish t ses of dark brown/bl bw approx. 2.5m] Pit terminated a	Ity CLAY, with freque light grey, plastic C e surfaces. blocky fissured, CLAY, v rel] orown below approx. 2. ack, fine to medium, and at 2.80m.	uent LAY, vith fine to .1m] ngular,	
											4
Di	t Dim	ension (m)			Pit Sta	bility			Water Strikes		
۲۱			Trial nit	stahle dur		avation		Trial nit dry	water strikes:		
I ongth	·	1 70	niai pli	. זנמטוב עעו	ing ext	avation		i nai pit ul y.			
Denth		2.80									
Beptil	-	2.00									

Trial Pit TP2 (Pit - full of water)

Trial Pit TP2 (Spoil)

Trial Pit TP4 (Pit)

Trial Pit TP4 (Spoil)

APPENDIX B

Field Sampling and In-Situ Test Methods and Results

Soil and Rock Descriptions

All soil and rock descriptions are in general accordance with BS5930 Ref [1].

Anthropogenic soils ('made ground' or 'fill') describe materials which have been placed by man and can be divided into those composed of reworked natural soils and those composed of or containing man-made materials. 'Fill' is used to describe material placed in a controlled manner and 'made ground' is used to describe materials placed without strict engineering control.

The classification of materials such as topsoil is based on visual description only and should not be interpreted to mean that the material complies with criteria used in BS 3882 Ref [4].

Chalk descriptions are based on CIRIA C574 Ref [5] and Mortimore Ref [6].

The geology code is only provided on logs where a positive identification of the sample strata has been made.

Trial Pits and Trenches

Trial pits and trenches are unsupported excavations, mechanically excavated by machine to the required depth to enable visual examination, in situ testing and sampling as required from outside the excavation.

Hand Penetrometer Test

The handheld soil penetrometer consists of a spring loaded and calibrated plunger which is forced into cohesive soil. A reading of unconfined compression strength (equal to twice cohesion) is given on a calibrated scale. The average of a set of three readings shall be recorded.

In common with other hand methods of strength assessment it does not give an accurate indication of bearing capacity in stiff or fissured soils, because of the small test area.

Soakage Tests (after BRE DG365 2016)

The BRE DG365 Ref [3] paper on soakaway design allows for the design of trench soakaways as well as traditional square and circular soakaways.

The test to measure the soil infiltration rate is carried out in pits which are excavated to the full depth of the proposed soakaway. The trial pits are filled and allowed to drain to empty or near empty, three times, on the same day or on consecutive days. Water levels are recorded against time. Where the sides are unstable the pit should be filled with granular material to provide stability during the test.

Calculated soakage rates are expressed as I/m²/minute, which is a convenient rate to use. The BRE use a unit of m/sec, which is the value in I/m²/minute divided by 60,000.

APPENDIX C

Site Photographs

Photo 3 – View from the centre-W (looking E)

Photo 4 – View from the SW (looking N)

Photo 7 – View of the buildings in the centre-E (looking SSW)

Photo 8 – View of the buildings in the centre-E (looking WNW)

Head Office East Grinstead Tel: 01342 333100 enquiries@southerntesting.co.uk

ST Consult Thames Valley Hannington Tel: 01635.800.950 hannington@stconsult.co.uk

