

Document Issue Record

Location:	Old Loom Mill, Earsham Road, Halisham BN27 2RH								
Application:	Demolition of existing b	Demolition of existing buildings in B1/B8 usage and café, followed by erection of 24 no. family houses							
Prepared for:	Aitco Ltd	Aitco Ltd							
Title:	Technical Note	Technical Note							
Project No.:	89594	89594 Date: 18 th January 2021 Issue No.: 1.0							
Written By:	A. Rousou, BSc (Hons) P.S. Gander	Checked By:	E. Bouet, BSc (Hons)	Authorised By:	E. Bouet, BSc (Hons) P.S. Gander				

This report (including any enclosures and attachments) has been prepared for the exclusive use and benefit of the commissioning party and solely for the purpose for which it is provided. Unless we provide express prior written consent, no part of this report should be reproduced, distributed or communicated to any third party. We do not accept any liability if this report is used for an alternative purpose from which it is intended, nor to any third party in respect of this report. Any data and information provided by third parties and referred to herein has not been checked or verified by us unless otherwise expressly stated within this report. This report was checked and approved on the date it was issued and is therefore valid on this date. Understanding, circumstances, regulations and professional standards do change, which could subsequently affect the validity of this report. This report is not to be used for detailed design of drainage systems. It is recommended that every drainage scheme uses hydraulic modelling software to finalise volume requirements and design details before drawings are produced.

Commercial in Confidence

1. Introduction

- 1.1. This Technical Note has been prepared by Unda Consulting Limited on behalf of Aitco Ltd, to address the concerns of Matthew Taylor of Wealden District Council.
- 1.2. The associated planning application relates to *Demolition of existing buildings in B1/B8 usage and café, followed by erection of 24 no. family houses.* These works are proposed to be undertaken at Old Loom Mill, Earsham Road, Halisham BN27 2RH.
- 1.3. Post development the total roof area of the twenty four new residential dwellings and two car ports will amount to approximately 2240m².

2. Existing Site:

2.1. The site is occupied by a former mill and is approximately 14631m² in size.

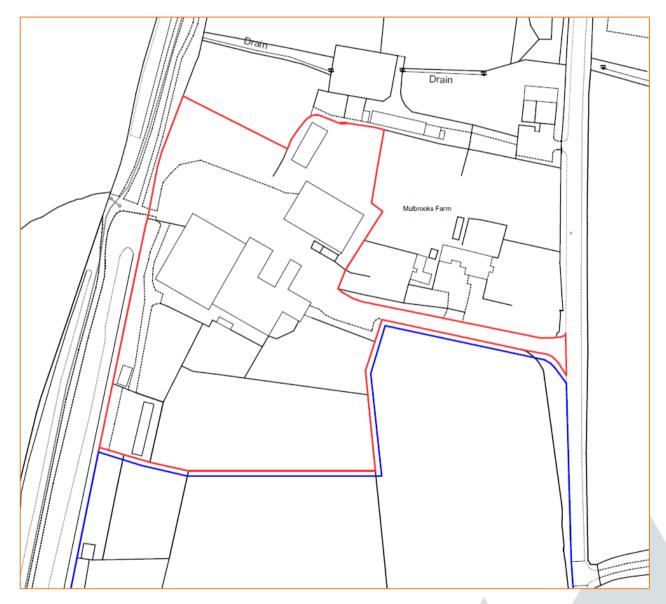


Figure 1: Site Location (Source: Ecotecture)

Commercial in Confidence

UND/

Figure 2: Aerial Imagery (Source: Google)

Site Topography:

- 2.2. A measured topographical survey has been undertaken at the site and provided by the client for inclusion within the report. This indicates that levels on site range between 4.71mAOD in the north and 10.79mAOD in the south west.
- 2.3. According to spot height levels, the site appears to generally slope from land in the south towards the northern periphery.
- 2.4. Based on the plans provided, the twenty four residential dwellings are proposed to be development upon land with an approximate elevation of between 4.82mAOD and 8.54mAOD.

Commercial in Confidence

Existing Ground Conditions:

2.5. Test results provided by Southern Testing Ltd indicate that all four Trial Pits failed to drain thus failed to complete the necessary drop in level (25% full) to calculate a compliant value for infiltration.

3. Development Proposals:

Proposed Development:

- 3.1. The proposed planning application is for redevelopment of the site with construction of twenty four new residential dwellings, with associated access road and parking.
- 3.2. Attenuation sizing within the strategy has been based on all newly introduced impermeable surfacing (6441m²), comprising both post development roof area and hardstanding. Thus significant betterment will be provided post development.

Figure 3: Proposed Site Layout Plan (Source: Ecotecture)

Commercial in Confidence

4. Surface Water Drainage Calculations and Maintenance:

Discharge Location:

4.1. Utilising the northern connection for post development runoff also corresponds with East Sussex County Council's consultation comments, dated 13th October 2017, which state:

Our preference is for the northern outfall to be used as this involves a short section of sewer and then discharges directly to the watercourse, unless the eastern outfall is proven to have significant benefits. We would request that each of the outfalls is investigated and the most appropriate outfall selected prior to the layout being fixed through any Reserved Matters application. This will also depend on the topography of the site.

Proposed Discharge Rate:

- 4.2. Existing greenfield runoff rates for the site have been calculated as 6.4 l/s for the 1:1 annual runoff event, 17.0 l/s for the 1:30 year event and 24.0 l/s for the 1:100 year event. Refer to calculations in appendix.
- 4.3. East Sussex County Council consultation response WD/2017/0839/MAO, dated 13th October 2017 states *surface water runoff from the proposed development should be limited to the 3.2 l/s, for all rainfall events, including those with a 1 in 100 (plus climate change) annual probability of occurrence.*
- 4.4. In light of this, it is proposed to discharge post development runoff to watercourse at a maximum rate of 3.2l/s using a Hydro-Brake.

Proposed SuDS:

- 4.5. The client has confirmed that they would like to incorporate rain gardens and a pond within the proposed scheme. In order to provide sufficient storage to accommodate all post development runoff during the 1 in 100 year plus climate change event a number of separate SuDS features are proposed within the project.
- 4.6. Below is a summary of the proposed mechanisms of surface water drainage at the site for each element of the scheme.

Element	Raingarden	Pond	Tanked Permeable Paving	Attenuation Storage Tank
Road, Paving and Parking				
Roof Area: Plots 1 – 4				
Roof Area: Plots 5 - 6				
Roof Area: Plots 7 – 8				
Roof Area: Plot 9				
Roof Area: Plots 10 – 24				
Car Ports				

Tanked Permeable Paving :

- 4.7. Part of the proposed access road will be surfaced in tanked permeable paving amounting to 2342m². Runoff from this area will percolate through the paving and be stored within a gravel sub-base. Check dams will be utilised within the sub-base where the topography is on a gradient, so as to maximise storage potential.
- 4.8. All water within the tanked permeable paving sub-base will be gradually discharged to the watercourse some 35m north of the site via outflow device.
- 4.9. Surface water runoff from the remaining impermeable element of the access road (479m²), proposed paving (1380m²) and the roof areas of plots 7 and 8 (241m²), will also be directed to the area of tanked permeable paving.
- 4.10. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance needs to be added to the roof area of plots 7 and 8 to take into account future urban creep. Applying a 10% allowance to the roof areas of plots 7 and 8 (241m²) gives a value of 265.1m².
- 4.11. In light of this all drainage calculations for sizing the tanked permeable paving have been made on the basis of a total impermeable area of 4466.1m² (2821m² of access road, 1380m² of paving and 265.1m² of roof area).

Commercial in Confidence

Technical Note - 89594-Ecotecture-OldLoomMill-180121-v1.0

- 4.12. Outflow from the proposed drainage system (tanked permeable paving) to the drainage ditch will be limited to 2.1 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.
- 4.13. Preliminary calculations indicate that tanked permeable pavement with dimensions of 2342m² x 0.5m deep x 0.3 (voids) will be sufficient to accommodate all runoff from 4201m² of impermeable surfacing and 265.1m² of roof area arising from the critical 1:100 year + 40% Climate Change event.
- 4.14. Preliminary calculations indicate that some 342.0m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% Climate Change event.
- 4.15. Refer to enclosed MicroDrainage calculations.
- 4.16. The highest pollution hazard level for the proposed land use is Low (residential car parks and low trafficked roads). The pollution hazard indices for this land use are shown in Table 1 below.

Total suspended solids (TSS)	Metals	Hydrocarbons	
0.5	0.4	0.4	

Table 1: Pollution Hazard Indices for the proposed site (from Table 26.2 of CIRIA C753 The SuDS Manual)

4.17. All SuDS components are assessed for their effectiveness in pollutant removal prior to discharge to sewer in Table 26.3 in CIRIA C753 The SuDS Manual. The pollution mitigation indices for permeable paving are show in Table 2 below.

Total suspended solids (TSS)	Metals	Hydrocarbons	
0.7	0.6	0.7	

Table 2: Pollution Mitigation Indices for permeable pavements (from Table 26.3 of CIRIA C753 The SuDS Manual)

4.18. The Pollution Mitigation Indices for permeable pavement are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, permeable pavements will provide sufficient water quality treatment prior to discharge.

Raingardens (Bioretention):

- 4.19. According to landscape plans, several areas have been made available for the incorporation of above ground SuDS.
- 4.20. It is proposed to utilise two of these designated areas to install raingardens. Raingardens offer a form of attenuation storage whilst providing biodiversity and amenity benefits. According to CIRIA SuDS Manual raingardens also provide a very effective treatment functionality through the removal of sediments and pollutants by filtration through the vegetation and underlying filter mediums.
- 4.21. Two rain gardens will be constructed, one in the south western corner of the site and one in the west, to accept roof runoff from plots 1 to 4 and plot 9, respectively.
- 4.22. Given that both raingardens are to be designed to accept roof runoff a 10% allowance needs to be added to comply with CIRIA C753: future urban creep. Applying a 10% allowance to the roof areas of plots 1 to 4 and plot 9 (341m² and 148m²) gives values of 375.1m² and 162.8m², respectively.
- 4.23. Based upon plans provided, the rain garden in the south western corner will have a surface area of 129m² and will be of sufficient size to accommodate surface water runoff from the roof areas (including urban creep allowance) of plots 1 to 4 during the 1 in 100 year plus (40%) climate change event.
- 4.24. The second rain garden, in the west, will reportedly cover an area of 38m². Whilst this rain garden is proposed to have a shallower sub-base and freeboard, it has also been designed to be of sufficient size to accommodate all runoff from roof areas associated with plot 9 for the 1 in 100 year plus (40%) climate change event.

Commercial in Confidence

- 4.25. Stones and gravel will be laid at the inlet of both rain gardens to dissipate the energy of entering water and prevent heavy flows from washing soils away.
- 4.26. In accordance to best practise guidance rain gardens should be located:
 - In full sun or partial shade;
 - Within a natural topographic low point in relation to the surrounding area;
 - At least 3m (10ft) away from the house, to avoid any damage to foundations by infiltrating water;
 - In a well-drained area, on a very gentle incline (10% or less);
 - Where it is practical to install a pipe leading to the main drainage system below the rain garden in case of excessively heavy storms.
- 4.27. In order to provide the maximum amount of storage possible, whilst achieving gravity connection to the proposed pond, the rain gardens will be constructed as flows:

Raingarden 1 (129m²): Serving plots 1 to 4

- Freeboard of 300mm,
- Topsoil (ratio 50% sand, 30% topsoil and 20% compost) of 300mm
- Sub-base of 500mm.

Raingarden 2 (38m²): Serving plot 9

- Freeboard of 200mm,
- Topsoil (ratio 50% sand, 30% topsoil and 20% compost) of 300mm
- Sub-base of 300mm.
- 4.28. An under-drain will be installed within the sub-base of the rain gardens to ensure both drain effectively and prevent waterlogging.
- 4.29. An 18mm diameter orifice will be installed to control discharge from rain garden 1, serving plots 1 to 4, and reduce flows to less 0.5 litres/second.
- 4.30. A 21mm diameter orifice will be installed to control discharge from rain garden 2, serving plot 9, and reduce flows to less 0.5 litres/second.
- 4.31. From both rain gardens, water will be discharged at a controlled rate into the pond (refer to the following section).
- 4.32. Refer to report appendix for suggested planting and raingarden schematics.
- 4.33. The highest pollution hazard level for the proposed land use is Very Low (residential roofs). The pollution hazard indices for this land use are shown in Table 1 below.

Total suspended solids (TSS)	Metals	Hydrocarbons	
0.2	0.2	0.05	

Table 3: Pollution Hazard Indices for the proposed site (from Table 26.2 of CIRIA C753 The SuDS Manual)

4.34. All SuDS components are assessed for their effectiveness in pollutant removal prior to discharge to sewer in Table 26.3 in CIRIA C753 The SuDS Manual. The pollution mitigation indices for raingardens (Bioretention)are show in Table 2 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.8	0.8	0.8

Table 4: Pollution Mitigation Indices for raingardens (Bioretention) (from Table 26.3 of CIRIA C753 The SuDS Manual)

4.35. The Pollution Mitigation Indices for the raingardens (Bioretention) are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, raingardens (Bioretention) will provide sufficient water quality treatment prior to discharge.

Commercial in Confidence

Pond (Attenuation Basin):

- 4.36. Runoff from the proposed roof areas associated with plots 1 to 6, plot 9 and the two car ports will be directed into an attenuation basin Sustainable Urban Drainage System (SUDS) situated in the centre south of the site. The main purpose of the pond will be to attenuate surface water runoff from the southerly most roof areas; however it will also provide ecological and aesthetic benefits.
- 4.37. Roof runoff from plots 5 and 6 (241m²) and the two car ports (202m²) will be connected directly to an attenuation basin located to in the centre south of the development.
- 4.38. Given that plots 5 and 6 are residential, an urban creep allowance needs to be applied. Plots 5 and 6 comprise some 241m² of potentially impermeable surfacing. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will be added to take into account future urban creep. Therefore, drainage calculations have been made on the basis of a total contributing impermeable area for plots 5 and 6 of 265.1m².
- 4.39. Runoff from plots 1 to 4 and 9 will be directed towards respective rain gardens prior to discharge to the attenuation basin. Discharge from each of the rain gardens into the pond will be limited to a maximum of 0.5 l/s. Refer to preceding section for information on the proposed raingardens.
- 4.40. Outflow from the attenuation basin to the drainage ditch will be limited to 0.5 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.
- 4.41. Preliminary calculations indicate that an attenuation basin with dimensions of $264.2m^2 \times 1.5m$ deep will be sufficient to accommodate all runoff from $1005m^2$ of impermeable surfacing arising from the critical 1:100 year + 40% Climate Change event.
- 4.42. The pond will provide an attenuation volume of 51.7m³ for surface water runoff from the development. The maximum attenuated water depth within the pond will be 0.403m.
- 4.43. The basin will retain a permanent water level at a depth of 0.5m; this can be utilised to provide biodiversity enhancement as part of the development and contribute towards the general amenity value of the scheme. All attenuation required for management of runoff from the catchment draining to the pond will be located above the permanent water volume but below the required 0.5m freeboard.
- 4.44. The basin design includes 0.597m of freeboard, above the maximum water level. This will mitigate residual flood risk from blockage or exceedance storm events.
- 4.45. Refer to enclosed MicroDrainage calculations.
- 4.46. The highest pollution hazard level for the proposed land use is Low (residential car parks and low trafficked roads). The pollution hazard indices for this land use are shown in Table 1 below.

Total suspended solids (TSS)	Metals	Hydrocarbons	
0.5	0.4	0.4	

Table 5: Pollution Hazard Indices for the proposed site (from Table 26.2 of CIRIA C753 The SuDS Manual)

4.47. All SuDS components are assessed for their effectiveness in pollutant removal prior to discharge to sewer in Table 26.3 in CIRIA C753 The SuDS Manual. The pollution mitigation indices for pond (attenuation basin) are show in Table 2 below.

Total suspended solids (TSS)	Metals	Hydrocarbons
0.7	0.7	0.5

Table 6: Pollution Mitigation Indices for pond (attenuation basin) (from Table 26.3 of CIRIA C753 The SuDS Manual)

4.48. The Pollution Mitigation Indices for pond (attenuation basin) are greater than the Pollution Hazard Indices for car parks and low trafficked roads. Therefore, pond (attenuation basin) will provide sufficient water quality treatment prior to discharge.

Commercial in Confidence

Attenuation Storage:

- 4.49. Surface water runoff from roof areas associated with plots 10 to 24 will be directed to and stored within an attenuation storage tank.
- 4.50. According to plans made available by the client the total roof area associated with plots 10 to 24 amounts to some 1066m² of potentially impermeable surfacing.
- 4.51. In order to comply with CIRIA C753 The SuDS Manual, a 10% allowance will need to be added to the roof areas to account future urban creep in this area. Applying a 10% allowance to the roof areas (1066m²) gives a value of 1172.6m². In light of this, all drainage calculations for the attenuation storage tank have been made on the basis of an impermeable coverage of 1172.6m².
- 4.52. From the attenuation storage tank, runoff will be gradually discharged to the drainage ditch some 35m north of the site, via the existing surface water infrastructure.
- 4.53. Outflow from the attenuation tank to the drainage ditch will be limited to a maximum of 0.6 l/s for all storms up to, and including, the 1:100 year + 40% climate change event via a hydrobrake. The hydrobrake will be installed in an inspection chamber within the site.
- 4.54. Preliminary calculations indicate that sufficient storage required to attenuate runoff from the proposed impermeable areas (1172.6m²) associated with plots 10 to 24, arising from the critical 1:100 year + 40% climate change event, can be provided within an attenuation storage tank of dimensions 120.0m² x 1.0m deep.
- 4.55. Preliminary calculations indicated that some 92.5m³ of storage is required to attenuate the runoff for all storms up to and including the 1:100 year + 40% climate change event.
- 4.56. Refer to enclosed MicroDrainage calculations.
- 4.57. Runoff from roof areas is considered to be uncontaminated and does not warrant any form of treatment process to improve water quality. Nevertheless, it is suggested to include debris / sediment traps on any new drainage.

Water Quality:

4.58. In addition to the water quality improvements stated in the previous sections, there will be an oil interceptor located upstream of the outfall to the watercourse. This will further reduce the pollution before the water leaves the site.

Commercial in Confidence

5. Discussion and Conclusions:

- 5.1. This Technical Note has been prepared by Unda Consulting Limited on behalf of Aitco Ltd, to address the concerns of Matthew Taylor of Wealden District Council.
- 5.2. The site is occupied by a former mill and is approximately 14631m2 in size.
- 5.3. A measured topographical survey has been undertaken at the site and provided by the client for inclusion within the report. This indicates that levels on site range between 4.71mAOD in the north and 10.79mAOD in the south west.
- 5.4. Based on the plans provided, the twenty four residential dwellings are proposed to be development upon land with an approximate elevation of between 4.82mAOD and 8.54mAOD.
- 5.5. The proposed planning application is for redevelopment of the site with construction of twenty four new residential dwellings, with associated access road and parking.
- 5.6. Attenuation sizing within the strategy has been based on all newly introduced impermeable surfacing (6441m²), comprising both post development roof area and hardstanding. Thus significant betterment will be provided post development.

Surface Water Drainage Strategy Discussion

- 5.7. Test results provided by Southern Testing Ltd indicate that all four Trial Pits failed to drain thus failed to complete the necessary drop in level (25% full) to calculate a compliant value for infiltration.
- 5.8. Utilising the northern connection for post development runoff also corresponds with East Sussex County Council's consultation comments, dated 13th October 2017, which state:

Our preference is for the northern outfall to be used as this involves a short section of sewer and then discharges directly to the watercourse, unless the eastern outfall is proven to have significant benefits. We would request that each of the outfalls is investigated and the most appropriate outfall selected prior to the layout being fixed through any Reserved Matters application. This will also depend on the topography of the site.

- 5.9. Existing greenfield runoff rates for the site have been calculated as 6.4 l/s for the 1:1 annual runoff event, 17.0 l/s for the 1:30 year event and 24.0 l/s for the 1:100 year event. Refer to calculations in appendix.
- 5.10. Outflow from the site will be limited by three hydro-brake flow control devices to a combined maximum rate of 3.2 l/s.
- 5.11. Below is a summary of the proposed mechanisms of surface water drainage at the site for each element of the scheme.

Element	Raingarden	Pond	Tanked Permeable Paving	Attenuation Storage Tank
Road, Paving and Parking				
Roof Area: Plots 1 – 4				
Roof Area: Plots 5 - 6				
Roof Area: Plots 7 – 8				
Roof Area: Plot 9				
Roof Area: Plots 10 – 24				
Car Ports				

- 5.12. Refer to pages 5-9 for further information regarding the individual SuDS sizing and how each feature will reduce contaminants.
- 5.13. In addition to the water quality improvements stated in the previous sections, there will be an oil interceptor located upstream of the outfall to the watercourse. This will further reduce the pollution before the water leaves the site to form a two-stage filtration system.
- 5.14. The roof runoff from plots 10 to 24 which is considered uncontaminated has a single stage filtration as there is not room within the scheme for a second stage.

Commercial in Confidence

Technical Note - 89594-Ecotecture-OldLoomMill-180121-v1.0

5.15. This drainage strategy has been undertaken in accordance with the principles set out in NPPF. We can conclude that providing the development adheres to the conditions advised above, the said development proposals can be accommodated without increasing flood risk within the locality in accordance with objectives set by Central Government and the EA.

Unda Consulting Limited

January 2021

Commercial in Confidence

6. Appendix

MicroDrainage Calculations:

- ICP SUDS Rural Runoff Calculations;
- ICP SUDS Urban Runoff Calculations;
- Tanked Permeable Paving and Hydro-Brake Calculations;
- Rain Garden Cascade;
- Pond Sizing and Hydro-Brake Calculations;
- Attenuation Storage and Hydro-Brake Calculations.

Information by Others:

• Infiltration Test Results – Southern Testing Ltd.

Commercial in Confidence

Unda Consulting Ltd		Page 1
Southpoint	Greenfield Runoff Rate	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirro
Date 14/08/2020	Designed by TS	Drainage
File	Checked by EJ	Diamaye
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years)100Soil0.450Area (ha)1.463Urban0.000SAAR (mm)800RegionNumberRegion7

Results 1/s

 QBAR Rural
 7.5

 QBAR Urban
 7.5

 Q100 years
 24.0

 Q1 year
 6.4

 Q30 years
 17.0

 Q100 years
 24.0

Unda Consulting Ltd		Page 1
Southpoint	Brownfield Runoff Rate	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirro
Date 14/08/2020	Designed by TS	Drainage
File	Checked by EJ	Diamaye
Innovyze	Source Control 2020.1	

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 Soil 0.450 Area (ha) 1.463 Urban 0.370 SAAR (mm) 800 Region Number Region 7

Results 1/s

QBAR Rural 7.5 QBAR Urban 12.7 Q100 years 31.3 Q1 year 10.8 Q30 years 24.9 Q100 years 31.3

	ulting Ltd	<u>_</u>							Page 1
outhpoin	t			Tank	ed Per	meable	Paving	1	0
Old Brighton Road					Development of 24 Dwellings				
Gatwick RH11 OPR					89594-Ecotecture-OldLoomMill				
Date 17/08/2020					.gned b	v TS			— Micro
File TPP WITH PLOTS 7 TO 8 2					ked by	-			Drainac
	WIIII ILOID	7 10	0 2		ce Con		020 1		
innovyze				Sour	ce con	LIOI Z	020.1		
	Summary	of Re	esults	for 10)0 year	Retur	n Peri	od (+40)응)
			Half D	rain Tim	ne : 138	3 minut	es.		
	Storm	Мах	Max	Max		Max	Max	Max	Status
	Event						Outflow		
		(m)	(m)	(1/s)		1/s)	(1/s)	(m ³)	
1 1	- min Cummon	1 626	0 146		0 0	0 1	0 1	102.6	0 14
	5 min Summer) min Summer				0.0 0.0	2.1 2.1	2.1		ОК
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
240) min Summer	4.843	0.363		0.0	2.1	2.1		Flood Risk
360) min Summer	4.870	0.390		0.0	2.1	2.1	273.9	Flood Risk
480) min Summer	4.886	0.406		0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1 2.1		Flood Risk
) min Summer) min Summer				0.0 0.0	2.1 2.1	2.1		Flood Risk Flood Risk
) min Summer) min Summer				0.0	2.1	2.1		Flood Risk Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
) min Summer				0.0	2.1	2.1		Flood Risk
	5 min Winter				0.0	2.1	2.1		
		Stor	n	Rain	Flooded	d Discha	arge Tim	e-Peak	
		Event	:	(mm/hr)	Volume	Volu	me (m	ins)	
					(m³)	(m³)		
	1	.5 min	Summer	138.005	0.0) 8	39.5	19	
	3	30 min	Summer	92.274			23.6	34	
	6	50 min	Summer	58.745	0.0) 17	76.2	64	
	12	20 min	Summer	36.008	0.0) 21	L8.2	124	
				26.598	0.0		41.9	184	
				21.360			58.4	242	
		50 min		15.683			32.0	362	
		30 min		12.575	0.0		97.3	482	
)0 min		10.586	0.0		06.6	602	
		20 min		9.192	0.0		L0.7	722	
		50 min		7.349)6.7	960 1226	
		10 min	Summer Summer	5.351 3.888	0.0		37.8 38.3	1226 1600	
			Summer	3.096	0.0		50.5 51.1	1600 2016	
			Summer	2.242	0.0		36.7	2852	
			Summer	1.781			30.4	3624	
			Summer		0.0		19.5	4392	

0.0

0.0

0.0

©1982-2020 Innovyze

1.141

10080 min Summer

8640 min Summer 1.289

15 min Winter 138.005

564.1

574.5

102.0

5104

5848

19

Unda Consulting Ltd		Page 2
Southpoint	Tanked Permeable Paving	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirco
Date 17/08/2020	Designed by TS	Drainage
File TPP WITH PLOTS 7 TO 8 2	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

Summary of Results for 100 year Return Period (+40%)

	Storm Event		Max Level (m)	Max Depth (m)	Max Infiltration (l/s)	Max Control (1/s)	Max Σ Outflow (1/s)	Max Volume (m³)	Status
30	min V	Winter	4.706	0.226	0.0	2.1	2.1	158.9	Flood Risk
60	min V	Winter	4.770	0.290	0.0	2.1	2.1	203.6	Flood Risk
120	min V	Winter	4.834	0.354	0.0	2.1	2.1	248.6	Flood Risk
180	min V	Winter	4.868	0.388	0.0	2.1	2.1	272.7	Flood Risk
240	min V	Winter	4.891	0.411	0.0	2.1	2.1	288.5	Flood Risk
360	min V	Winter	4.921	0.441	0.0	2.1	2.1	310.0	Flood Risk
480	min V	Winter	4.940	0.460	0.0	2.1	2.1	323.2	Flood Risk
600	min V	Winter	4.952	0.472	0.0	2.1	2.1	331.7	Flood Risk
720	min V	Winter	4.960	0.480	0.0	2.1	2.1	337.1	Flood Risk
960	min V	Winter	4.967	0.487	0.0	2.1	2.1	342.0	Flood Risk
1440	min V	Winter	4.962	0.482	0.0	2.1	2.1	339.0	Flood Risk
2160	min V	Winter	4.943	0.463	0.0	2.1	2.1	325.5	Flood Risk
2880	min V	Winter	4.921	0.441	0.0	2.1	2.1	309.9	Flood Risk
4320	min V	Winter	4.868	0.388	0.0	2.1	2.1	272.5	Flood Risk
5760	min V	Winter	4.805	0.325	0.0	2.1	2.1	228.3	Flood Risk
7200	min V	Winter	4.746	0.266	0.0	2.1	2.1	186.6	Flood Risk
8640	min V	Winter	4.695	0.215	0.0	2.1	2.1	151.0	Flood Risk
10080	min V	Winter	4.652	0.172	0.0	2.1	2.1	121.1	O K

	Stor	m	Rain	Flooded	Discharge	Time-Peak
	Even	t	(mm/hr)	Volume	Volume	(mins)
				(m³)	(m³)	
		Winter		0.0	138.7	33
60	min	Winter	58.745	0.0	198.8	64
120	min	Winter	36.008	0.0	245.0	122
180	min	Winter	26.598	0.0	270.5	180
240	min	Winter	21.360	0.0	287.8	240
360	min	Winter	15.683	0.0	310.5	356
480	min	Winter	12.575	0.0	321.1	472
600	min	Winter	10.586	0.0	322.7	588
720	min	Winter	9.192	0.0	319.4	702
960	min	Winter	7.349	0.0	311.4	926
1440	min	Winter	5.351	0.0	295.8	1354
2160	min	Winter	3.888	0.0	492.7	1688
2880	min	Winter	3.096	0.0	517.5	2160
4320	min	Winter	2.242	0.0	534.9	3072
5760	min	Winter	1.781	0.0	599.1	3928
7200	min	Winter	1.491	0.0	621.6	4680
8640	min	Winter	1.289	0.0	639.3	5368
		Winter	1.141	0.0	652.4	6056

Unda Consulting Ltd		Page 3
Southpoint	Tanked Permeable Paving	
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	Mirco
Date 17/08/2020	Designed by TS	Drainage
File TPP WITH PLOTS 7 TO 8 2	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	·

<u>Rainfall Details</u>

FSR	Winter Storms Yes
100	Cv (Summer) 0.750
England and Wales	Cv (Winter) 0.840
20.700	Shortest Storm (mins) 15
0.358	Longest Storm (mins) 10080
Yes	Climate Change % +40
	100 England and Wales 20.700 0.358

<u>Time Area Diagram</u>

Total Area (ha) 0.447

Time (mins) Area From: To: (ha)

0 4 0.447

Inda Consulting L	td					Page 4
outhpoint		Tanked	l Permeable	Paving		
)ld Brighton Road		Develo	pment of 2	4 Dwelling	ls	
Gatwick RH11 OPR		89594-	Ecotecture	-OldLoomMi	.11	Micro
ate 17/08/2020		Design	ed by TS			
Tile TPP WITH PLO	TS 7 TO 8 2	2 Checke	ed by EJ			Drainag
Innovyze		Source	e Control 2	020.1		
		Model D	<u>etails</u>			
	Storage	is Online Co	ver Level (m) 4.980		
	<u>Po</u> .	<u>rous Car Pa</u>	<u>rk Structu</u>	re		
Infiltration	Coefficient	Base (m/hr) (.00000	Wio	dth (m)	234.2
Memb	rane Percolat		1000		gth (m)	
		ation (l/s)	650.6		. ,	0.0 5
	Sa	fety Factor Porosity	0.30 EV	vaporation (r	nm/dav)	3
	Inver	t Level (m)		ap Volume Dep	-	
	<u>Hydro-Br</u>	ake® Optimu	um Outflow	Control		
		Unit Referer	nce MD-SHE-00	76-2100-050	0-2100	
		Design Head		2 2200 0000	0.500	
	De	sign Flow (1/			2.1	
		Flush-Fl			ulated	
		Objecti Applicati	ve Minimise	-	torage urface	
		Sump Availak		51	Yes	
		Diameter (m			76	
		nvert Level	. ,		4.480	
	-	e Diameter (m .e Diameter (m			100 1200	
Sug	-	ol Points		Flow (l/s)	1200	
		nt (Calculate		2.1		
	5	Flush-Flo		2.1		
		Kick-Fl		1.8		
	Mean Flow o	over Head Ran	ge –	1.8		
The hydrological c Hydro-Brake® Optim Hydro-Brake Optimu invalidated	um as specifi	ed. Should a	another type	of control of	device o	ther than a
Depth (m) Flow (1	/s) Depth (m)	Flow (l/s)	Depth (m) Fl	ow (l/s) Der	oth (m)	Flow (l/s)
	2.0 1.200		3.000	4.8	7.000	7.2
	2.1 1.400		3.500	5.2	7.500	7.4
	2.0 1.600 1.9 1.800		4.000 4.500	5.5 5.8	8.000 8.500	7.7 7.9
	2.1 2.000		5.000	6.1	9.000	8.2
0.500	2.3 2.200		5.500	6.4	9.500	8.4
	1	4.3	6.000	6.7		
0.600	2.6 2.400					
0.600 0.800	2.6 2.400 2.9 2.600		6.500	6.9		
0.600 0.800			6.500	6.9		

Unda Consulting	g Ltd						Page 1
Southpoint							0
)ld Brighton Ro	ad						
Gatwick RH11 C)PR						Mirco
Date 17/08/2020	16:23	De	sian	ed hv	Thomas	-Smith	— Micro
file	10.20		ecke	-	111011100	Onit Ch	Drainag
					rol 202	0 1	
Innovyze		50	urce	COIIC	101 202	0.1	
<u>Cascade Su</u>	mmary of Resul	lts for	r Plo	ts 1	to 4 Ra	<u>ingarden (</u>	.5 ls.SRCX
Upstre	am	0	utflow	. Т О		Over	flow To
Structu						0.01	
(No	one) Plots 5 to 6	5 and ca	r por	t Dire	ect to Por	nd.SRCX	(None)
	Storm	Max	Max	Max	Max	Status	
	Event				ol Volume		
		(m)	(m)			-	
	15 min Summer	7 635 (075	0	.2 9.7	ОК	
	30 min Summer				.2 9.7		
	60 min Summer				.2 16.2		
	120 min Summer					Flood Risk	
	180 min Summer) Flood Risk	
	240 min Summer) Flood Risk	
	360 min Summer	7.740 (0.180	0	.3 23.2	Price	
	480 min Summer	7.744 (0.184	0	.3 23.7	/ Flood Risk	
	600 min Summer	7.745 (0.185	0	.3 23.9) Flood Risk	
	720 min Summer	7.746 (0.186	0	.3 24.0) Flood Risk	
	960 min Summer	7.746 (0.186	0	.3 24.0) Flood Risk	
	1440 min Summer	7.744 (0.184	0	.3 23.8	8 Flood Risk	
	2160 min Summer	7.737 (0.177	0	.3 22.9) Flood Risk	
	2880 min Summer	7.729 (0.169	0	.3 21.8	8 Flood Risk	
	4320 min Summer					/ Flood Risk	
	5760 min Summer				.2 17.7		
	7200 min Summer				.2 16.1		
	8640 min Summer	/.6/4 ().114	0	.2 14.7	ОК	
	Stown	Dain	FIC	adad	Diachonco	e Time-Peak	
	Storm Event	Rain (mm/hi		lume	Volume	(mins)	
	Evenc	(11017) 111	-	m ³)	(m ³)	(11113)	
			-				
	15 min Summe:			0.0	8.3		
	30 min Summe:			0.0	11.0		
	60 min Summe:			0.0	16.0		
	120 min Summe: 180 min Summe:			0.0 0.0	19.6 21.7		
	240 min Summe: 240 min Summe:			0.0	21.7		
	360 min Summe:			0.0	25.2		
	480 min Summe:			0.0	27.1		
	600 min Summe:			0.0	28.3		
	720 min Summe:			0.0	29.3		
	960 min Summe:			0.0	30.7		
	1440 min Summe:			0.0	31.8		
	2160 min Summe:			0.0	39.3		
	2880 min Summe:			0.0	41.7		
	4320 min Summe:			0.0	44.7		
	5760 min Summe:			0.0	48.5		
	7200 min Summe:	r 1.49	91	0.0	50.7	4184	
				~ ~	E 2 E	4928	
	8640 min Summe:	r 1.28	39	0.0	52.5	4920	
		r 1.28				4920	

nda Consulting Ltd outhpoint							Page
-							8
ld Brighton Road							
atwick RH11 OPR						a	— Mic
ate 17/08/2020 16:23		-	ned by	'l'hoi	mas-	Smith	Dra
lile		hecke	-				End
nnovyze	S	ource	e Cont	rol :	2020	.1	
		- 1					1 00
<u>Cascade Summary of Resul</u>	ts ic	or Pl	ots 1	to 4	Rai	ngarden 0.5	ls.SR0
Storm	Max	Max	Max	. 1	Max	Status	
Event			1 Contr			blacus	
	(m)	(m)	(1/s		(m ³)		
10080 min Summer				.2	13.5	ОК	
15 min Winter 30 min Winter).2).2	10.9 14.5	ок ок	
60 min Winter).2	18.2	0 K	
120 min Winter).3		Flood Risk	
180 min Winter).3		Flood Risk	
240 min Winter).3		Flood Risk	
360 min Winter				.3		Flood Risk	
480 min Winter	7.769	0.20		.3		Flood Risk	
600 min Winter				.3		Flood Risk	
720 min Winter	7.772	0.21	2 0	.3	27.3	Flood Risk	
960 min Winter				.3		Flood Risk	
1440 min Winter				.3		Flood Risk	
2160 min Winter				.3		Flood Risk	
2880 min Winter				.3		Flood Risk	
4320 min Winter				.3		Flood Risk	
5760 min Winter				.2	17.8	ОК	
7200 min Winter 8640 min Winter).2).2	15.6 13.7	ок ок	
10080 min Winter).2	12.2	0 K	
Storm	Ra	in F	bebool	Disch	arge	Time-Peak	
Event		hr) V		Vol	-	(mins)	
			(m ³)	(m		、 - ,	
10000	- 1	1 4 1	0 0		F 4 0		
10080 min Summer 15 min Winter		141	0.0		54.0 9.3	5656 19	
30 min Winter			0.0		9.3	33	
60 min Winter		745	0.0		17.9	62	
120 min Winter			0.0		21.9	122	
180 min Winter		598	0.0		24.3	180	
240 min Winter			0.0		25.9	238	
360 min Winter	r 15.	683	0.0		28.4	352	
480 min Winter	12.	575	0.0		30.2	466	
600 min Winter		586	0.0		31.5	574	
720 min Winter		192	0.0		32.5	680	
960 min Winter		349	0.0		33.8	780	
1440 min Winter		351	0.0		34.7	1082	
2160 min Winter		888	0.0		44.1	1536	
		096	0.0		46.7	1984	
2880 min Winter		242	0.0		50.0	2812	
4320 min Winter		781	0.0		54.3 56.8	3632 4400	
4320 min Winter 5760 min Winter		491	VI. VI				
4320 min Winter 5760 min Winter 7200 min Winter	<u> </u>	491 289			58.9	5184	
4320 min Winter 5760 min Winter	1. 1.	289	0.0		58.9 60.6	5184 5944	
4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	1. 1.				58.9 60.6	5184 5944	
4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter	1. 1.	289	0.0				
4320 min Winter 5760 min Winter 7200 min Winter 8640 min Winter 10080 min Winter	1. 1. 1.	289 141	0.0				

Unda Consulting Ltd		Page 3
Southpoint		(C
Old Brighton Road		Contraction of the
Gatwick RH11 0PR		Micco
Date 17/08/2020 16:23	Designed by Thomas-Smith	
File	Checked by	Drainage
Innovyze	Source Control 2020.1	
<u>Cascade Rainfall Details f</u>	or Plots 1 to 4 Raingarden 0.5 ls	S.SRCX
Rainfall Model	FSR Winter Storms Y	
Return Period (years)	100 Cv (Summer) 0.7 and and Wales Cv (Winter) 0.8	
M5-60 (mm)		15
Ratio R	0.358 Longest Storm (mins) 100	
Summer Storms	Yes Climate Change % +	40
<u> </u>	ne Area Diagram	
Tot	al Area (ha) 0.038	
	ime (mins) Area om: To: (ha)	
	0 4 0.038	
	0 4 0.038	

Unda Consulting Ltd		Page 4
Southpoint		
Old Brighton Road		
Gatwick RH11 OPR		Micco
Date 17/08/2020 16:23	Designed by Thomas-Smith	Drainane
File	Checked by	Diamage
Innovyze	Source Control 2020.1	·

Cascade Model Details for Plots 1 to 4 Raingarden 0.5 ls.SRCX

Storage is Online Cover Level (m) 8.010

Tank or Pond Structure

Invert Level (m) 7.560

Depth (m) Area (m^2) Depth (m) Area (m^2)

0.000 129.0 0.450 129.0

Orifice Outflow Control

Diameter (m) 0.018 Discharge Coefficient 0.600 Invert Level (m) 7.560

Unda Consulting Lto	1					Page 1
Southpoint						0
Old Brighton Road						Concernant and
Gatwick RH11 OPR						Micco
Date 17/08/2020 16:	25	Des	igned r	y Thomas	-Smith	— Micro
File			ecked by	-		Drainage
Innovyze				trol 202	20 1	
тшоууге				202	.0.1	
<u>Cascade Sum</u>	mary of Re	esults f	for Plot	9 Raing	garden 0.5	ls.SRCX
Upstream Structures		Out	tflow To		Over	flow To
(None)	Plots 5 to 6	6 and car	port Di	rect to Po	nd.SRCX	(None)
	Storm		fax Ma		Status	
	Event		epth Cont (m) (1/	rol Volum s) (m³)	e	
1 5	min Summer	7 504 0	104	0.3 4.	0 Flood Risk	
	min Summer				2 Flood Risk	
	min Summer				3 Flood Risk	
120	min Summer	7.583 0.	.183		0 Flood Risk	
180	min Summer	7.587 0.	.187	0.4 7.	1 Flood Risk	
240	min Summer	7.588 0.	.188	0.4 7.	1 Flood Risk	
	min Summer				1 Flood Risk	
	min Summer				9 Flood Risk	
	min Summer				7 Flood Risk	
	min Summer min Summer				5 Flood Risk 1 Flood Risk	
	min Summer				2 Flood Risk	
	min Summer				3 Flood Risk	
	min Summer				6 Flood Risk	
4320	min Summer	7.471 0.	.071	0.2 2.	7 Flood Risk	
5760	min Summer	7.455 0.	.055		1 Flood Risk	
	min Summer				7 Flood Risk	
8640	min Summer	7.439 0.	.039	0.2 1.	5 Flood Risk	
	Storm	Rain	Flooded	Discharg	e Time-Peak	
	Event	(mm/hr)		Volume	(mins)	
			(m³)	(m³)		
1	5 min Summe:	r 138.005	5 0.0	4.	1 18	
	0 min Summe					
	0 min Summe					
	0 min Summe					
	0 min Summe: 0 min Summe:					
	0 min Summe: 0 min Summe:					
	0 min Summe:					
	0 min Summe:					
	0 min Summe					
96	0 min Summe	r 7.349	9 0.0	14.	1 588	
	0 min Summe					
144		r 3.888	3 0.0			
144 216	0 min Summe			1 7	8 1588	
144 216 288	0 min Summe					
144 216 288 432	0 min Summe: 0 min Summe:	r 2.242	2 0.0	19.	3 2296	
144 216 288 432 576	0 min Summe 0 min Summe 0 min Summe	r 2.242 r 1.781	2 0.0 L 0.0	19. 20.	3 2296 5 3008	
144 216 288 432 576 720	0 min Summe: 0 min Summe:	r 2.242 r 1.781 r 1.491	2 0.0 L 0.0 L 0.0	19. 20. 21.	3 2296 5 3008 4 3744	
144 216 288 432 576 720	0 min Summe: 0 min Summe: 0 min Summe: 0 min Summe:	r 2.242 r 1.781 r 1.491	2 0.0 L 0.0 L 0.0	19. 20. 21.	3 2296 5 3008 4 3744	

	ng Ltd						Page 2
Southpoint							6
Old Brighton 1	Road						·
Gatwick RH11	OPR						Micco
Date 17/08/202	20 16:25	De	esiane	ed by T	homas-	Smith	- Micro
File			necked	_			Drainag
				Contro	1 2020	1	
Innovyze		50	Jurce	CONCLO	1 2020	• ⊥	
Casaa	de Summary of Re	cult c	for	Plot 9	Painga	rdop 0 5 la	CDCV
	<u>de Summary of Re</u>	SUILS	101	FIOL 9	Kailiya	<u>10en 0.5 15</u>	. SRCA
	Storm	Max	Max	Max	Max	Status	
	Event	Level	Depth	Control	Volume		
		(m)	(m)	(l/s)	(m³)		
	10080 min Summer	7 131	0 034	0.1	1 3	Flood Risk	
	15 min Winter			0.1		Flood Risk	
	30 min Winter			0.3		Flood Risk	
	60 min Winter	7.586	0.186	0.4		Flood Risk	
	120 min Winter			0.4		Flood Risk	
	180 min Winter	7.612	0.212	0.4	8.1	Flood Risk	
	240 min Winter			0.4		Flood Risk	
	360 min Winter			0.4		Flood Risk	
	480 min Winter			0.4		Flood Risk	
	600 min Winter 720 min Winter			0.4		Flood Risk Flood Risk	
	960 min Winter			0.4		Flood Risk	
	1440 min Winter			0.4		Flood Risk	
	2160 min Winter			0.3		Flood Risk	
	2880 min Winter			0.2		Flood Risk	
	4320 min Winter			0.2	2.1	Flood Risk	
	5760 min Winter	7.441	0.041	0.2	1.6	Flood Risk	
	7200 min Winter			0.1		Flood Risk	
	8640 min Winter 10080 min Winter			0.1		Flood Risk Flood Risk	
	Storm	Rain	n Flo	ooded Di	scharge	Time-Peak	
	Storm Event	Raiı (mm/h			scharge Volume	Time-Peak (mins)	
			r) Vo		-		
	Event	(mm/h	ir) Vo (lume V m³)	Volume (m³)	(mins)	
	Event	(mm/h	ar) Vo (blume V m ³) 0.0	volume (m ³) 22.9	(mins) 5144	
	Event	(mm/h 1.1 138.0	4 1 05	lume V m³)	Volume (m³)	(mins)	
	Event 10080 min Summer 15 min Winter	(mm/h 1.1 138.0 2 92.2	41 05 74	<pre>blume V m³) 0.0 0.0</pre>	volume (m ³) 22.9 4.5	(mins) 5144 18	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter	(mm/h 1.1 138.0 2.2 58.7 36.0	41 005 74 45 008	lume V m ³) 0.0 0.0 0.0	volume (m ³) 22.9 4.5 6.1	(mins) 5144 18 32	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter	(mm/h 1.1 138.0 2.2 58.7 36.0 26.5	41 05 74 45 08 98	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Volume (m ³) 22.9 4.5 6.1 7.9 9.6 10.7	(mins) 5144 18 32 60 116 168	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3	41 05 74 45 08 98 60	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4	(mins) 5144 18 32 60 116 168 190	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6	Vo 41 05 74 45 08 98 600 83	lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6</pre>	(mins) 5144 18 32 60 116 168 190 266	
	Event 10080 min Summer 15 min Winter 30 min Winter 120 min Winter 180 min Winter 240 min Winter 360 min Winter 480 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5	 41 05 74 45 08 98 660 83 75 	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5</pre>	(mins) 5144 18 32 60 116 168 190 266 342	
	Event 10080 min Summer 15 min Winter 30 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 600 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5	Yo 41 05 74 45 98 600 833 75 86	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 515.6 12.5 10.5 9.1	Yong 41 005 774 445 008 998 660 833 775 886 992	Jume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>/ colume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488	
	Event 10080 min Summer 15 min Winter 30 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 600 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5 9.1 7.3	Yong 41 005 774 445 008 998 660 833 775 866 92 49	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416	
	Event 10080 min Summer 15 min Winter 30 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 5.6 12.5 10.5 9.1 5.3	Yo 41 05 774 45 08 60 83 60 83 775 86 92 449 551	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>/ colume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626	
	Event 10080 min Summer 15 min Winter 30 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 280 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 13.8 15.6 13.5 15.6 10.5 15.5 10.5	Yong 41 005 774 445 008 998 600 833 775 886 92 449 551 888	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>/ colume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2160 min Winter 280 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5	Yon Yon 41 05 (41 05 (42 ((44 ((44 ((44 ((44 ((44 ((44 ((44 ((44 ((45 ((46 ((47 ((48 ((92 ((51 ((88 ((96 ((Jume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336	
	Event 10080 min Summer 15 min Winter 30 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 280 min Winter 280 min Winter 5760 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5	Yo 41 05 774 45 08 60 83 60 83 775 86 92 449 551 88 96 42 81	Jume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6 23.0</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336 3056	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 240 min Winter 360 min Winter 360 min Winter 480 min Winter 720 min Winter 1440 min Winter 240 min Winter 240 min Winter 5760 min Winter 720 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 5.6 12.5 10.5 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5	Yon Yon 41 05 0 774 45 0 600 83 0 640 83 0 775 86 92 449 551 88 996 422 881 991 91 91	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6 23.0 24.0</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336 3056 3752	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 240 min Winter 360 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 240 min Winter 240 min Winter 5760 min Winter 8640 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5	Yon Yon 41 05 0 774 45 0 608 3 0 6098 60 3 600 83 0 775 86 92 551 88 96 42 81 91 899 91 89	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6 23.0 24.0 24.9	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336 3056 3752 4408	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 240 min Winter 360 min Winter 360 min Winter 480 min Winter 720 min Winter 1440 min Winter 240 min Winter 240 min Winter 5760 min Winter 720 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.5 1.5 1.5 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Yon Yon 41 05 0 774 45 0 608 3 0 6098 60 3 600 83 0 775 86 92 551 88 96 42 81 91 899 91 89	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	<pre>volume (m³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6 23.0 24.0</pre>	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336 3056 3752	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 240 min Winter 360 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 240 min Winter 240 min Winter 5760 min Winter 8640 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5	Yon Yon 41 05 0 774 45 0 608 3 0 6098 60 3 600 83 0 775 86 92 551 88 96 42 81 91 899 91 89	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6 23.0 24.0 24.9	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336 3056 3752 4408	
	Event 10080 min Summer 15 min Winter 30 min Winter 60 min Winter 120 min Winter 120 min Winter 240 min Winter 360 min Winter 480 min Winter 720 min Winter 960 min Winter 1440 min Winter 2800 min Winter 2800 min Winter 2800 min Winter 4320 min Winter 5760 min Winter 8640 min Winter	(mm/h 1.1 138.0 92.2 58.7 36.0 26.5 21.3 15.6 12.5 10.5 10.5 10.5 10.5 10.5 2.2 1.3 1.1 1.2 1.1 1.2 1.1	Yon 41 005 774 45 008 98 600 833 775 866 92 449 551 888 996 442 81 91 899 41	Lume V m³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Yolume (m ³) 22.9 4.5 6.1 7.9 9.6 10.7 11.4 12.6 13.5 14.2 14.8 15.7 17.2 18.8 19.9 21.6 23.0 24.0 24.9 25.7	(mins) 5144 18 32 60 116 168 190 266 342 416 488 626 894 1276 1644 2336 3056 3752 4408	

Unde Conquilting Ity	D	<u> </u>
Unda Consulting Ltd	Page	3
Southpoint		
Old Brighton Road		×
Gatwick RH11 OPR	Mic	ſO
Date 17/08/2020 16:25	Designed by Thomas-Smith	inage
File		nage
Innovyze	Source Control 2020.1	
<u>Cascade Rainfall De</u>	tails for Plot 9 Raingarden 0.5 ls.SRCX	
Rainfall Model Return Period (years) Region M5-60 (mm) Ratio R Summer Storms	100 Cv (Summer) 0.750 England and Wales Cv (Winter) 0.840 20.700 Shortest Storm (mins) 15 0.358 Longest Storm (mins) 10080	
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.016	
	Time (mins) Area From: To: (ha)	
	0 4 0.016	
	0 4 0.016	
	@1.000_2000_Text	
	©1982-2020 Innovyze	

Unda Consulting Ltd	Page 4
Southpoint	
Old Brighton Road	
Gatwick RH11 OPR	Misco
Date 17/08/2020 16:25	Designed by Thomas-Smith
File	Checked by
Innovyze	Source Control 2020.1
Cascade Model Details	for Plot 9 Raingarden 0.5 ls.SRCX
Storage is On	nline Cover Level (m) 7.690
Tank	or Pond Structure
Inve	rt Level (m) 7.400
Depth (m) Are	ea (m ²) Depth (m) Area (m ²)
0.000	38.0 0.290 38.0
Orific	ce Outflow Control
Diameter (m) 0.021 Discharge	e Coefficient 0.600 Invert Level (m) 7.400
©198	32-2020 Innovyze

Jnda Consult	ting Ltd								Page 1
outhpoint									0
old Brighton	n Road								
Gatwick RH2	L1 OPR								Micro
Date 17/08/2	2020 16:2	26	E	esign	ed b	у Т	homas-	Smith	
File				hecke	-	-			Draina
Innovyze							1 2020	.1	
					5.511		2020		
Cascade	Summary	v of Resu	lts fo	or Plo	ots 5	tc	6 and	<u>l car port Di</u>	irect to
				Pond.				<u> </u>	
		Upst	ream			Ou	tflow To	o Overflow To	
		Struc	tures						
	P	lot 9 Raind	garden	0.5 ls	.SRCX		(None)) (None)	
		to 4 Raing	-						
		~							
		Storm Event	Max	Max	Maz	-	Max Volume	Status	
		Avenc	(m)	-	(1/s		(m ³)		
					• •	•	. /		
		min Summer).5			
		min Summer min Summer					16.3 21.1	ОК	
		min Summer						Flood Risk	
		min Summer						Flood Risk	
	240	min Summer	7.006	0.266	(0.5	31.9	Flood Risk	
		min Summer						Flood Risk	
		min Summer).5		Flood Risk	
		min Summer min Summer						Flood Risk Flood Risk	
		min Summer).5		Flood Risk	
		min Summer						Flood Risk	
		min Summer						Flood Risk	
		min Summer						Flood Risk	
		min Summer min Summer						Flood Risk Flood Risk	
		min Summer						Flood Risk	
		Storm	Rai	n Fl	ooded	Dis	charge	Time-Peak	
		Event	(mm/1	hr) Vo	lume	v	olume	(mins)	
				((m³)		(m³)		
	1 5	5 min Summe	r 138 (005	0.0		23.2	19	
) min Summe			0.0		31.0	78	
	60) min Summe	r 58.	745	0.0		43.0	188	
) min Summe			0.0		52.7	312	
) min Summe			0.0		58.4	394	
) min Summe) min Summe			0.0		62.5 68.5	464 586	
) min Summe			0.0		72.7	696	
	600) min Summe	r 10.	586	0.0		75.2	802	
) min Summe		192	0.0		75.5	898	
) min Summe			0.0		73.8	1052	
) min Summe) min Summe		351 388	0.0		69.6 104.9	1442 2088	
) min Summe)96	0.0		104.9	2388	
) min Summe		242	0.0		119.7	2988	
) min Summe		781	0.0		129.0	3728	
	7200) min Summe	r 1.4	491	0.0		134.9	4472	

nda Consulting Ltd						Page
outhpoint						0
ld Brighton Road						10 Const.
atwick RH11 OPR						Miles
ate 17/08/2020 16:	26	Dec	igned h	Thomas-	Smith	MICI
	20			111011183		Drai
ile			cked by			
novyze		Sou	rce Cont	rol 2020	.1	
~ ~	C -					
<u>Cascade Summar</u>	<u>y of Resu</u>			to 6 and	<u>car port</u>	Direct t
		<u>Po</u>	nd.SRCX			
	Storm	More	Max Max	c Max	Status	
	Event			col Volume	Status	
	20010		(m) (1/s			
	min Summe			0.5 22.5		
	min Summe).5 19.2		
	min Winte).5 13.6		
	min Winte).5 18.4		
	min Winte min Winte				Flood Risk Flood Risk	
	min Winte min Winte				Flood Risk Flood Risk	
	min Winte				Flood Risk	
	min Winte				Flood Risk	
	min Winte				Flood Risk	
	min Winte				Flood Risk	
	min Winte				Flood Risk	
960	min Winte	r 7.129 0	.389 (0.5 49.6	Flood Risk	
	min Winte).5 51.7	Flood Risk	
	min Winte				Flood Risk	
	min Winte				Flood Risk	
	min Winte				Flood Risk	
	min Winte min Winte				Flood Risk Flood Risk	
	min Winte min Winte).5 25.9).5 20.2		
	Storm	Rain		Discharge		
	Event		(m ³)	Volume (m³)	(mins)	
			()	()		
	0 min Summ			139.9		
	0 min Summ			143.9		
	5 min Wint			26.0		
	0 min Wint			34.4		
	0 min Wint 0 min Wint			48.2 59.1		
	0 min Wint 0 min Wint			59.1 65.3		
	0 min Wint 0 min Wint			69.7		
	0 min Wint			75.4		
	0 min Wint			76.6		
	0 min Wint			75.8		
	0 min Wint			74.8		
	0 min Wint			73.0		
144	0 min Wint	er 5.35	1 0.0	69.9	1430	
	0 min Wint			117.5		
	0 min Wint			124.4		
432	0 min Wint			131.7		
			1 0.0	144.6	4048	
	0 min Wint					
720	0 min Wint	er 1.49	1 0.0	151.2	4784	
720		er 1.49	1 0.0		4784	

Unda Consulting Ltd		Page 3
Southpoint		
Old Brighton Road		
Gatwick RH11 OPR		Mirco
Date 17/08/2020 16:26	Designed by Thomas-Smith	Desinado
File	Checked by	Diamatje
Innovyze	Source Control 2020.1	1

Cascade Summary of Results for Plots 5 to 6 and car port Direct to Pond.SRCX

Storm	Max	Max	Max	Max	Status
Event	Level (m)	Depth (m)	Control (1/s)	Volume (m³)	
	(m)	(m)	(1/s)	(m³)	

10080 min Winter 6.879 0.139 0.5 15.7 O K

Storm			Discharge	
Event	(mm/hr)	(m³)	Volume (m³)	(mins)
10080 min Winter	1.141	0.0	161.4	6152

Unda Consulting Ltd		Page 4
Southpoint		
Old Brighton Road		
Gatwick RH11 OPR		Micco
Date 17/08/2020 16:26	Designed by Thomas-Smith	Desinado
File	Checked by	Drainage
Innovyze	Source Control 2020.1	
Cascade Rainfall Details for Pl	ots 5 to 6 and car port Direct to	Pond.SRCX
Deinfell Medel	ECD Wintow Champa V	~~

	Rainfal.	l Model		FSR	t.	Winter	Storms	Yes
Return	Period	(years)		100		Cv (Summer)	0.750
		Region	England	and Wales		Cv (Winter)	0.840
	M5-6	60 (mm)		20.700	Shortest	Storm	(mins)	15
	I	Ratio R		0.358	Longest	Storm	(mins)	10080
	Summer	Storms		Yes	Clir	mate C	hange 🖇	+40

<u>Time Area Diagram</u>

Total Area (ha) 0.047

Time (mins) Area From: To: (ha)

0 4 0.047

Unda Consulting Ltd					Page 5
Southpoint					
Old Brighton Road					100 million (1997)
Gatwick RH11 OPR					Misso
Date 17/08/2020 16:26	Designer	hy The	omas-Smith		MILIU
File	_	-			Drainage
	Checked		0000 1		
Innovyze	Source (Control	2020.1		
Cascade Model Details for 3	Plots 5 to 6	and ca	ar port Dir	ect to	Pond.SRCX
- -	s Online Cove				
<u>Ta</u>	ink or Pond :	Structu	re		
	Invert Level (
Depth (m) Area (m ²) Depth (m)					
0.000 105.0 0.500	166.6	0.501	185.0	1.000	264.2
<u>Hydro-Bra</u>	<u>ke® Optimum</u>	Outflo	<u>w Control</u>		
	Unit Reference	MD-SHE-	0038-5000-05	00-5000	
	esign Head (m)			0.500	
Des	ign Flow (1/s)		0-1	0.5	
	Flush-Flo™ Objective		.se upstream	culated	
	Application		-	Surface	
	Sump Available			Yes	
	Diameter (mm)			38	
	vert Level (m)			6.740	
Minimum Outlet Pipe				75	
Suggested Manhole	Diameter (mm)			1200	
Contro	l Points	Head (m)	Flow (l/s)		
Design Point	(Calculated)	0.500	0.5		
	Flush-Flo™				
	Kick-Flo®				
Mean Flow or	ver Head Range	-	- 0.4		
The hydrological calculations ha Hydro-Brake® Optimum as specifie Hydro-Brake Optimum® be utilised invalidated	d. Should and	other typ	e of control	device	other than a
Depth (m) Flow (l/s) Depth (m)	Flow (1/s) De	pth (m) 1	Flow (l/s) De	epth (m)	Flow (l/s)
0.100 0.5 1.200	0.7	3.000	1.1	7.000	
0.200 0.5 1.400	0.8	3.500	1.2	7.500	
0.300 0.5 1.600	0.8	4.000	1.3	8.000	
0.400 0.5 1.800 0.500 0.5 2.000	0.9	4.500 5.000	1.3	8.500 9.000	
0.600 0.5 2.200	1.0	5.000	1.4	9.000	
0.800 0.6 2.400	1.0	6.000	1.5	2.000	1.7
1.000 0.7 2.600	1.0	6.500	1.6		
,	a1000_0000 T		<u></u>		
(©1982-2020 I	movyze	•		

	ting Ltd							Page
Southpoint			Atte	enuatio	n Tan	k: Plo	ts 10-24	- age
odempoint Old Brighto	n Road			elopmen				Sec
Gatwick RH				-			oomMill	
Date 17/08/	-					e-orar		– Mici
				igned b	-			Drai
File PLOTS	10 10 24	DIRECT T		cked by				
Innovyze			Sou	cce Con	trol :	2020.1		
	0		C 1	0.0	Del	D.		
	<u>Summary (</u>	<u>DI Results</u>	ior 1	<u>00 year</u>	Retu	rn Per	iod (+40%)	<u> </u>
		Storm	Max	Max	Max	Max	Status	
		Event		Depth Co			Status	
			(m)	-	1/s)	(m ³)		
	1		4 2 6 0	0 050	0 4		0.11	
		5 min Summer) min Summer			0.4 0.4		ОК ОК	
) min Summer) min Summer			0.4	50.3		
) min Summer			0.4		0 K	
) min Summer			0.5	66.1		
) min Summer			0.5	69.6		
) min Summer			0.5	74.3		
) min Summer) min Summer			0.5 0.5	77.1 78.8		
) min Summer			0.5			
	96) min Summer	4.780	0.670	0.5	80.4	O K	
) min Summer			0.5	79.1		
) min Summer			0.5	76.3		
) min Summer) min Summer			0.5 0.5	73.3 67.6		
) min Summer			0.5			
	720) min Summer	4.587	0.477	0.4	57.2	O K	
) min Summer			0.4	52.6		
) min Summer			0.4			
		5 min Winter) min Winter			0.4 0.4			
		Storm	Rain			-	ime-Peak	
				Volume	VoL	ume	(mins)	
		Event	(mm/hr)		(3 \		
		Event	(mm/hr)	(m ³)	(m	³)		
		min Summer	138.005	(m³) 0.0		28.7	19	
	30	min Summer min Summer	138.005 92.274	(m³) 0.0 0.0		28.7 35.1	34	
	30 60	min Summer min Summer min Summer	138.005 92.274 58.745	(m³) 0.0 0.0 0.0		28.7 35.1 50.8	34 64	
	30 60 120	min Summer min Summer min Summer	138.005 92.274	(m ³) 0.0 0.0 0.0 0.0		28.7 35.1	34	
	30 60 120 180	min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008	(m ³) 0.0 0.0 0.0 0.0		28.7 35.1 50.8 61.8	34 64 124	
	30 60 120 180 240 360	min Summer min Summer min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0		28.7 35.1 50.8 61.8 67.6 70.6 72.2	34 64 124 184 242 362	
	30 60 120 180 240 360 480	min Summer min Summer min Summer min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5	34 64 124 184 242 362 482	
	30 60 120 180 240 360 480 600	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5	34 64 124 184 242 362 482 602	
	30 60 120 180 240 360 480 600 720	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.4	34 64 124 184 242 362 482 602 722	
	30 60 120 180 240 360 480 600 720 960	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5	34 64 124 184 242 362 482 602	
	30 60 120 240 360 480 600 720 960 1440	min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.5 72.4 72.2	34 64 124 184 242 362 482 602 722 960	
	30 60 120 240 360 480 600 720 960 1440 2160 2880	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1	28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.5 72.4 72.2 72.0 22.0 22.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020	
	30 60 120 240 360 480 600 720 960 1440 2160 2880 4320	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096 2.242	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1	28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.5 72.4 72.2 72.0 22.0 22.0 28.9 26.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020 2856	
	30 60 120 240 360 480 600 720 960 1440 2160 2880 4320 5760	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096 2.242 1.781	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 1 1 1 1 1 1	28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.5 72.4 72.2 72.0 22.0 22.0 22.0 28.9 26.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020 2856 3688	
	30 60 120 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096 2.242 1.781	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 1 1 1 1 1 1 1 1	28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.5 72.4 72.2 72.0 22.0 22.0 28.9 26.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020 2856	
	30 60 120 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096 2.242 1.781 1.491	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	111111111111111111111111111111111111111	28.7 35.1 50.8 61.8 67.6 70.6 72.2 72.5 72.5 72.5 72.4 72.2 72.0 22.0 22.0 22.0 22.0 22.0 22.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020 2856 3688 4536	
	30 60 120 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096 2.242 1.781 1.491 1.289 1.141 138.005	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 1 1 1 1 1 1 1	28.7 35.1 50.8 61.8 67.6 72.2 72.5 72.5 72.5 72.4 72.2 72.0 22.0 22.0 22.0 22.0 22.0 22.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020 2856 3688 4536 5352 6152 19	
	30 60 120 240 360 480 600 720 960 1440 2160 2880 4320 5760 7200 8640 10080 15	min Summer min Summer	138.005 92.274 58.745 36.008 26.598 21.360 15.683 12.575 10.586 9.192 7.349 5.351 3.888 3.096 2.242 1.781 1.491 1.289 1.141	(m ³) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 1 1 1 1 1 1 1	28.7 35.1 50.8 61.8 67.6 72.2 72.5 72.5 72.4 72.2 72.0 22.0 22.0 22.0 22.0 22.0 22.0	34 64 124 184 242 362 482 602 722 960 1256 1640 2020 2856 3688 4536 5352 6152	

Unda Consulting Ltd						Page 2
Southpoint		Atte	enuation	Tank: P	lots 10-24	0
Old Brighton Road		Deve	elopment	of 24 D	wellings	10 mar
Gatwick RH11 OPR			-		dLoomMill	Micro
Date 17/08/2020		Desi	gned by	TS		- Micro
File PLOTS 10 TO 24	DIRECT T		cked by E			Draina
	DIRECT I		ce Contr		1	
Innovyze		5001		01 2020	• ⊥	
Silmmari	of Posults	for 10	10 voar E	oturn E	eriod (+40%	`
<u>Summar y</u>	OI RESULLS	101 10	JU YEAL F	<u>eculli r</u>	<u>erroa (+40%</u>	<u>) </u>
	Storm	Max M	ax Max	Max	Status	
			pth Contro			
			m) (1/s)			
	min Winter 4					
	min Winter 4					
	min Winter 4					
	min Winter 4					
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4				Flood Risk	
	min Winter 4					
	min Winter 4					
	min Winter 4			4 61.0		
	min Winter 4					
10080	min Winter 4	1.506 0.	396 0.	4 47.5	0 K	
	Storm	Rain	Flooded	icoharra	Timo-Dool-	
	Storm Event		Volume	Volume	Time-Peak (mins)	
	Event	(1111/112)			(mins)	
			(m³)	(m³)		
	0 min Winter			56.7	64	
12	0 min Winter	36.008	0.0	68.3	122	
18	0 min Winter	26.598	0.0	72.2	180	
24	0 min Winter	21.360	0.0	73.2	240	
36	0 min Winter	15.683	0.0	73.9	356	
48	0 min Winter	12.575	0.0	74.4	474	
60	0 min Wintor	10 596	0 0	7/7	590	

00	111211	WINCCI	00.710	0.0	00.1	01
120	min	Winter	36.008	0.0	68.3	122
180	min	Winter	26.598	0.0	72.2	180
240	min	Winter	21.360	0.0	73.2	240
360	min	Winter	15.683	0.0	73.9	356
480	min	Winter	12.575	0.0	74.4	474
600	min	Winter	10.586	0.0	74.7	590
720	min	Winter	9.192	0.0	75.1	702
960	min	Winter	7.349	0.0	75.9	930
1440	min	Winter	5.351	0.0	76.2	1358
2160	min	Winter	3.888	0.0	136.2	1712
2880	min	Winter	3.096	0.0	141.3	2164
4320	min	Winter	2.242	0.0	132.5	3108
5760	min	Winter	1.781	0.0	167.8	3984
7200	min	Winter	1.491	0.0	175.6	4896
8640	min	Winter	1.289	0.0	182.2	5712
10080	min	Winter	1.141	0.0	187.9	6648

Unda Consulting Ltd	Page 3	
Southpoint	Attenuation Tank: Plots 10-24	Micro Drainage
Old Brighton Road	Development of 24 Dwellings	
Gatwick RH11 OPR	89594-Ecotecture-OldLoomMill	
Date 17/08/2020	Designed by TS	
File PLOTS 10 TO 24 DIRECT T	Checked by EJ	Diamage
Innovyze	Source Control 2020.1	

<u>Rainfall Details</u>

FSR	Winter Storms Yes
100	Cv (Summer) 0.750
England and Wales	Cv (Winter) 0.840
20.700	Shortest Storm (mins) 15
0.358	Longest Storm (mins) 10080
Yes	Climate Change % +40
	100 England and Wales 20.700 0.358

<u>Time Area Diagram</u>

Total Area (ha) 0.117

Time (mins) Area From: To: (ha)

0 4 0.117

Unda Consulting	g Ltd				F	Page 4
Southpoint	-	Attenua	tion Tank:	: Plots 1		-
Old Brighton Ro	bad	Develop	ment of 24	l Dwellin	as	Sec. 1
Gatwick RH11 (cotecture-			Mirco
Date 17/08/2020		Designe				Micro
File PLOTS 10			-			Drainag
Innovyze			Control 20)20 1		2
iiiiovy2c		bource		20.1		
		<u>Model Det</u>	<u>tails</u>			
	Storage	is Online Cove	er Level (m)	5.110		
	<u>T</u>	ank or Pond	<u>Structure</u>			
		Invert Level	(m) 4.110			
	Depth (m	n) Area (m²) De	epth (m) Are	a (m²)		
	0.00	0 120.0	1.000	120.0		
	<u>Hydro-Br</u>	<u>ake® Optimum</u>	Outflow (<u>Control</u>		
		Unit Reference	e MD-SHE-003	36-6000-10	00-6000	
		Design Head (m			1.000	
	De	sign Flow (l/s Flush-Flo ^r		Cal	0.6 culated	
			e Minimise			
		Application	n	-	Surface	
		Sump Available			Yes	
	т	Diameter (mm nvert Level (m			36 4.110	
Mi	nimum Outlet Pip				75	
	Suggested Manhol				1200	
	Contro	ol Points	Head (m) F	'low (l/s)		
	Design Poin	nt (Calculated)				
		Flush-Flo™		0.4		
	Mean Flow c	Kick-Flo® over Head Range		0.4		
	Mean FIOW C	ver nead Range		0.5		
Hydro-Brake® Op	l calculations h timum as specifi imum® be utilise	ed. Should an	other type o	of control	device oth	ner than a
Depth (m) Flow	(1/s) Depth (m)		epth (m) Flo	ow (l/s) D	epth (m) Fi	
0.100	0.4 1.200		3.000	1.0	7.000	1.4
0.200 0.300	0.4 1.400 0.4 1.600		3.500 4.000	1.0	7.500 8.000	1.5 1.5
0.400	0.4 1.800		4.500	1.2	8.500	1.5
0.500	0.4 2.000	0.8	5.000	1.2	9.000	1.6
0.600	0.5 2.200		5.500	1.3	9.500	1.7
0.800 1.000	0.5 2.400 0.6 2.600		6.000 6.500	1.3		
T.000	2.000	0.9	0.000	±•1		
		©1982-2020				

Factual Soakage Test Report

Project Name: Old Loom Mill, Hailsham Location: Ersham Road, Hailsham, East Sussex Client: Aitco Ltd. Project ID: J14496 Report Date: 8 July 2020

Report Issue: 1

Author	C Lennard BEng (Hons)	
Check / Review	J N Race BSc MSc CGeol FGS	JAR

For and on behalf of Southern Testing Laboratories Limited

DOCUMENT HISTORY AND STATUS

Issue No.	Date	Purpose or Status	Author	Check / Review
1	08/07/2020	First Issue	CL	JNR

Copyright © 2020 Southern Testing Laboratories Ltd.

TABLE OF CONTENTS

Α		RODUCTION	1
	1	Authority	1
	2	Location	1
	3	Background & Objectives	1
	4	Scope	1
В		E SETTING	1
	5	Geology	1
	6	Site Description	2
С	GRC	OUND INVESTIGATION	2
	7	Strategy and Method	2
	8	Weather Conditions	3
	9	Soils as Found	3
	10	Groundwater Observations	3
D	TES	ST RESULTS	3
	11	Soakaways	3

TABLE OF APPENDICES

APPENDIX A
Site Plans, Trial Pit Logs and Trial Pit Photographs
APPENDIX B
Field Sampling and In-Situ Test Methods and Results
APPENDIX C

Site Photographs

INTRODUCTION Α

1 Authority

Our authority for carrying out this work is contained in a Southern Testing Project Order form (dated 18 June 2020) completed by Mr C Frost of Future Planning and Development Ltd. On behalf of Aitco Ltd.

2 Location

The site is located approximately 2km to the south of Hailsham town centre. The National Grid Reference of the site is TQ 58820 07250. The site location is indicated on Figure 1 within Appendix A.

3 **Background & Objectives**

It is proposed to redevelop the site with residential properties, which includes areas of proposed attenuation ponds/swales. The object of this investigation was to assess the soakage potential of soils on site.

4 Scope

This factual report presents our exploratory hole logs and test results only. Contamination and geotechnical issues are not considered in this report.

A UXO risk assessment was not requested within our brief for the investigation.

As with any site there may be differences in soil conditions between exploratory hole positions.

This report is not an engineering design and the figures and calculations contained in the report should be used by the Engineer, taking note that variations will apply, according to variations in design loading, in techniques used, and in site conditions. Our figures therefore should not supersede the Engineer's design.

The site investigation has been completed with reference to BS 5930[1] and BS 10175[2]

The findings and opinions conveyed via this investigation report are based on information obtained from a variety of sources as detailed within this report, and which Southern Testing Laboratories Ltd. believes are reliable. Nevertheless, Southern Testing Laboratories Ltd. cannot and does not guarantee the authenticity or reliability of the information it has obtained from others.

The investigation was conducted and this report has been prepared for the sole internal use and reliance of Aitco Ltd. and their appointed Engineers. This report shall not be relied upon or transferred to any other parties without the express written authorisation of Southern Testing Laboratories Ltd. If an unauthorised third party comes into possession of this report they rely on it at their peril and the authors owe them no duty of care and skill.

The recommendations contained in this report may not be appropriate to alternative development schemes.

B SITE SETTING

5 Geology

The British Geological Survey 1:50,000 map of the area (No. 319/334 - Lewes & Eastbourne) indicates that the site geology consists of the Weald Clay Formation.

5.1.1 Weald Clay Formation

The Weald Clay Formation comprises dark grey thinly-bedded shales and mudstones with subordinate siltstones, sandstones (including the Horsham Stone Member), shelly limestones and clay ironstones. The mudstones weather to yellow and brown clays. Conspicuous bands of red clay also occur, usually in close association with sandstone beds.

The clays have often been worked for various purposes, and the clay ironstone, a low-grade iron ore, was worked from sporadic beds across the Wealden area. The steep sides of the degraded remains of former workings are usually unstable. Other workings have been filled with a variety of materials.

This formation is known to contain pyrite.

6 Site Description

The subject site, which is approximately rectangular in shape and extends to around 145×95m, comprises a vacant mill, together with numerous outbuildings. The site is understood to have most recently been used for a number of commercial/retail purposes including a tearoom, fabric shop and craft units.

Approximately half of the site is covered by buildings, some of which were noted to have corrugated asbestos cement roofs, and hardstanding areas, which include concrete and compacted granular material. The remainder of the site comprises grassed areas, overgrown shrubs/bushes and numerous semi-mature to mature trees.

Access was not available within the buildings, however, some areas of rubbish/fly-tipped materials were observed within some external hardstanding areas, most notably in the centre/west of the site.

The site is set within a predominantly rural area, which comprises fields and scattered residential/commercial properties, together with the Cuckoo Trail (a former railway line) forming the western site boundary.

The site is largely flat and level, although ground levels were noted to fall gently by approximately 1-2m in the north of the site, towards to the northern boundary.

6.1 Site Photographs

A series of photographs showing the site at the time of our investigation is included in Appendix C.

С **GROUND INVESTIGATION**

7 **Strategy and Method**

The strategy adopted for the intrusive investigation comprised the following:

Activity / <i>Method</i>	Purpose	Max Depth (bgl)	Installations / Notes
TP1-TP4 8T Tracked Excavator	Trial pits to investigate the shallow ground conditions and allow for the preliminary assessment of soakage potential using the BRE365 method, at locations agreed with the client.	2.8-3.0m	One day of testing undertaken as requested by the client's engineer.

Access was slightly restricted due to the presence of buildings, underground/overhead services and rubbish/fly-tipped waste etc. The exploratory hole locations are shown on Figure 2 in Appendix A.

In-situ test and sampling method descriptions employed are given in Appendix B together with the test results.

Weather Conditions 8

The fieldwork was carried out on 26th June 2020, at which time the weather was dry and sunny. Whilst in general, the winter of 2019/20 had been wetter than average, based on rainfall records from the Southern Water region, the 3 month period prior to the soakage testing was drier than average (see table below).

Month	Long Term Average Rainfall	Actual Rainfall	Actual vs Average Percentage
April 2020	51.8mm	47.2mm	90%
May 2020	52.8mm	6.7mm	15%
June 2020	53.0mm	44.8mm	85%

* Data source: https://www.southernwater.co.uk/water-for-life/regional-rainfall

9 Soils as Found

The soils encountered are described in detail in the attached exploratory hole logs (Appendix A), but in general comprised a covering of Topsoil (0.3-0.4m) over stiff to very stiff, silty/plastic clay, with occasional ironstone gravel. Within trial pit TP3, carried out in an area of hardstanding composed of compacted granular, made ground was encountered to a depth of approximately 0.7m(bgl), which included frequent bricks and brick fragments, timber, plastic, plywood and rope etc.

Groundwater Observations 10

During the fieldwork, groundwater was not encountered in any of the trial pits prior to soakage testing.

TEST RESULTS D

11 Soakaways

Soakage Test Results 11.1

The BRE paper DG365 [3] describes a method for site testing to determine soil infiltration rates at the proposed site of a soakaway. The in-situ test method is described in Appendix B.

A total of four soakage tests were carried out across the site, at the locations shown on the attached site plan Figure 2, Appendix A. The full results of the soakage tests are presented within Appendix B.

For design purposes, the DG365, states that each pit should be allowed to drain three times to near empty, with filling on the same or consecutive days. However, as requested by the client's engineer, only a single day of testing was requested as a preliminary assessment of the soakage potential and given the very poor permeabilities anticipated due to the mapped presence of clay soils. The infiltration rate from each trial hole is summarised in the table below.

Test ID	Test Depth	Design Infiltration Rate		Notes
	(bgl)	ℓ/m²/minute	m/sec	
TP1	0.94-3.00m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 286 mins
TP2	0.97-2.90m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 310 mins
TP3	0.98-3.00m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 248 mins
TP4	0.98-2.80m	n/a	n/a	Water level did not fall at all (ie. <1cm) within the test period of 219 mins

Negligible infiltration was measured during the 219-310 minutes of the testing undertaken in each trial pit.

11.2 General Guidance on Design of Soakaways

Any soakaway/drainage scheme may require the approval of the Environment Agency and Building Control.

Soakaways are used to store the immediate surface water run-off from hard surfaced areas, such as roof or carparks, and allow for efficient infiltration into the adjacent soil. They should be designed to discharge their stored water sufficiently quickly to provide the necessary capacity to receive run-off from a subsequent storm. The time taken for discharge depends upon the soakaway shape and size, and the surrounding soil's infiltration characteristics.

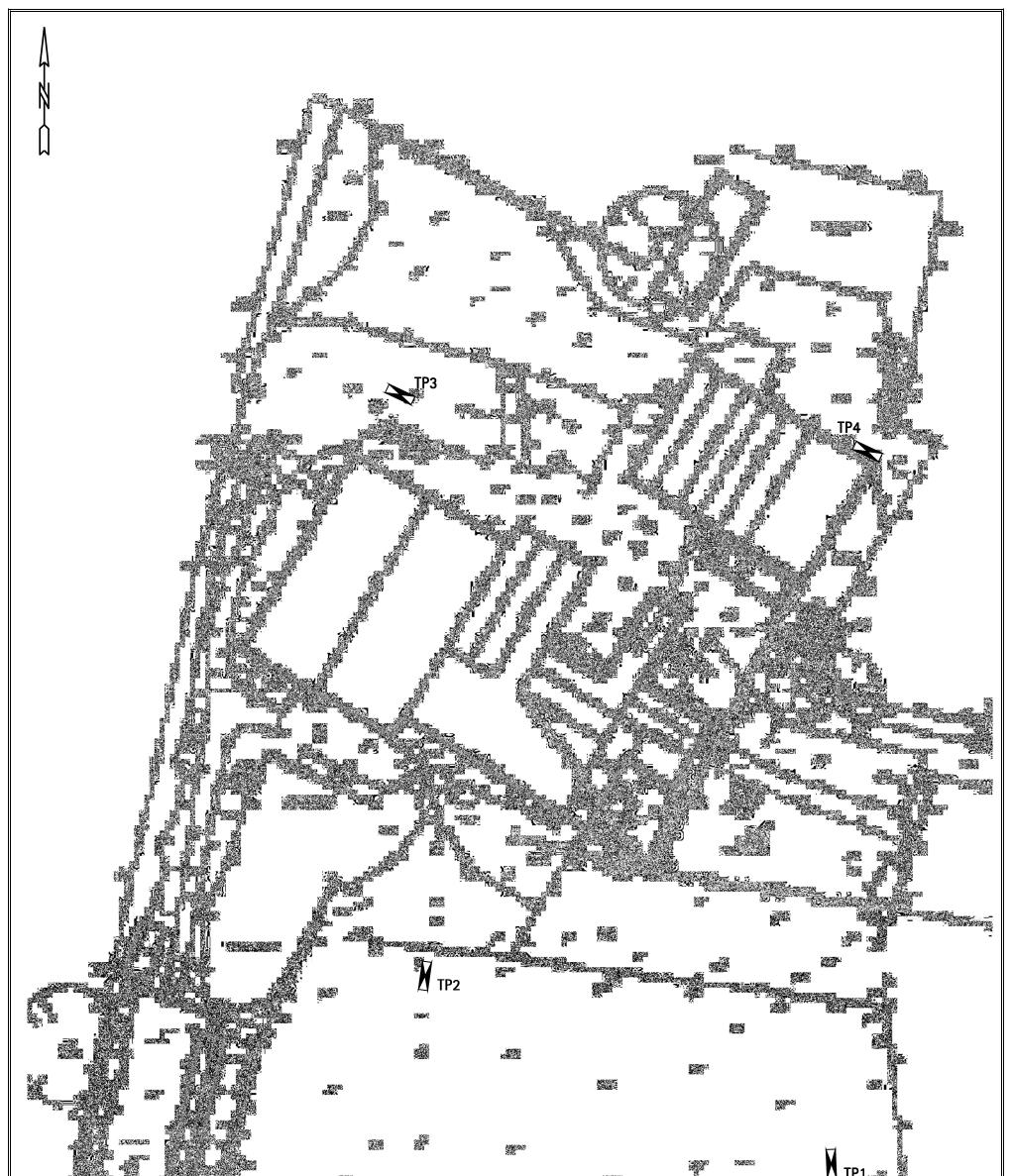
Groundwater levels can vary considerably from season to season and year to year, often rising in wet or winter weather, and falling in periods of drought. As such, a high groundwater table may affect the storage capacity of soakaways. In addition, it should be noted that an unsaturated zone may be required between the base of soakaways and the groundwater table, by the Environment Agency. Longer term monitoring may be required to establish actual groundwater levels as part of the planning approval process.

REFERENCES

- [1] BSI Standards, "BS 5930 Code of practice for ground investigations," 2015.
- [2] BSI Standards, "BS10175 Investigation of potentially contaminated sites Code of practice," 2013.
- [3] Building Research Establishment (BRE), "DG365 Soakaway Design," 2016.
- [4] BSI Standards, "BS 3882:2015 Specification for Topsoil," 2015.
- [5] CIRIA, "C574 Engineering in Chalk," 2002.
- [6] R. N. Mortimore, Logging the Chalk, 2014.

APPENDIX A

Site Plans, Trial Pit Logs and Trial Pit Photographs



					222 222	Line and the second sec		∆ TP1
NB: Positions of Boreholes	and/or Trial Pits are on	ly indicative unles	s dimensioned					
NB: Positions of Boreholes Site: Old Loom Mill, Hailsha		ly indicative unles	s dimensioned		STL	: J14490	6	Fig No: 2
		ly indicative unles	s dimensioned					Fig No: 2 Plan (not to scale)

Key to Exploratory Hole Logs, Plans and Sections									
Backfill Symbols		Pipe Symbols		Principal Soil Types		Principal Rock Types		Drilling Records	
Arisings		Plain Pipe		Topsoil	****	Mudstone	\equiv	Water Strike	V
Concrete		Slotted Pipe	E	Made Ground	***	Claystone	==	Depth Water Rose	T
Blacktop		Piezometer	I	Clay		Siltstone	$\times \times $	Total Core Recovery (%) [TCR]	
Bentonite		Piezometer Tip		Silt	$(\times \times)$	Sandstone	:::	Solid Core Recovery (%) [SCR]	
Gravel Filter	 	Filter Tip		Sand		Limestone	-1	Rock Quality Index (%) RQD]	
Sand Filter		Extensometer	Х	Gravel	•••••	Chalk	, ' -	Fracture Index (fractures / m) [FI]	
		Inclinometers	8	Peat	she she				

All soil and rock descriptions are in general accordance with BS5930 2015, BS EN ISO 14688-1:2002+A1:2013 and BS EN ISO 14689-1:2003. Chalk descriptions are also based on CIRIA C574 and "Logging the Chalk – R.N. Mortimer 2015". The Geology Code is only provided where a positive identification of the sample strata has been made.

	Location / Method Identifiers
вн	Borehole (undefined)
СР	Cable Percussive
RC	Rotary Core
RO	Rotary Open Hole
ODC	Rotary Odex/Symmetrix drilling cased
CP+RC	Cable Percussive to Rotary Core
SNC	Sonic
CFA	Continuous Flight Auger
FA	Flight Auger
VC	Vibro Core
WLS+RC	Windowless (Dynamic) Sampler to Rotary Core
WLS	Windowless Sampler
WS	Window Sampler
HA	Hand Auger
С	Road / Pavement Core
IP	Inspection Pit (Hand Excavation)
TP	Trial Pit (Machine Excavated)
OP	Observation Pit (Supported Excavation Hand or Machine)

	In-situ Test Location / Method
DP	Dynamic Probe
СРТ	Cone Penetration Test
CBR	In-situ CBR Test
DCP	CBR using Dynamic Cone Penetrometer
CBRT	CBR using TRL Probe
РВ	Plate Bearing Test
SPT (S)	Standard Penetration Test (Split Barrel Sampler)
SPT (C)	Standard Penetration Test (Solid Cone)
N	SPT Result
-/-	Blows/Penetration (mm) after seating drive
-*/-	Total Blows / Penetration (mm)
()	Extrapolated Value
PPT	Perth Penetration (In-House Method - Equivalent N Value)
HP / UCS	Strength from Hand Penetrometer (kN/m ²)
IVN	Strength from Hand Vane ((kN/m²) P = peak, R = residual
PID	Photo Ionisation Detector (ppm)
MEXE	Mexi-Cone CBR (%)

ST Consult

Environmental & Geotechnical

	Samples / Test Type			
В	Bulk Sample			
BLK	Block Sample			
С	Core Sample			
CBRS	CBR Mould Sample			
D	Small Disturbed Sample			
ES	Environmental Sample (Soil)			
EW	Environmental Sample (Water)			
GS	Environmental Sample (Gas)			

	Samples / Test Type
SPTLS	Standard Penetration Test Split Barrel Sample
TW	Thin Wall Push In Sample (e.g. Shelby Sampler)
U	Undisturbed Open Drive Sample (blows to take)
UT	Thin Wall Undisturbed Open Drive Sample (blows to take)
W	Water Sample (Geotechnical)
SP	Sample from Stockpile
Р	Piston Sample
AMAL	Amalgamated Sample

Sol	uthe	rn Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP1		
www.southerntesting.co.uk tel:01342 333100 www.sto			w.stconsult.co.	uk tel:01604 5000.	20	26/	06/2020	J14496	8T Tracked	Sheet 1 of 1		
Project Na	me:	Old Loom Mill, Hai	sham		Rema	marks:		inates:	Level (m AOD): 6.70	Logger: CL		
.ocation: Ersha		Ersham Road, Hails	sham Road, Hailsham, East Sussex				 BRE365 Soakage Test Pit. Ground level interpolated from supplied site survey drawing. 					
Client:		Aitco Ltd			2. Gro	ouna iev	ver interpolated fi	rom supplied site	e survey drawing.			
Sai Depth (m)	nples an Type	d Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des	scription			
			(0.40) (III bg/) Light greyish brown, friable, silty CLAY, with rootlets and very occasional fine angular b (TOPSOIL).									
0.50	HP	UCS(kPa)=500.00	6.3	(0.70)		0.40	Stiff to very st CLAY. [0.4-0.8m: Soils des		and orange brown,	silty		
1.00	НР	UCS(kPa)=150.00	5.6			1.10	[Off-white silty calcareous lenses at approx. 0.8m]					
			5.0			1.10	CLAY.	t grey and light ye	ellowish brown, plas ow approx. 1.5m]	tic		
2.00	НР	UCS(kPa)=160.00		(1.90)								
							[With occasional let ironstone gravel be		lack, fine to medium, ar	ıgular,		
3.00	HP	UCS(kPa)=200.00	3.7			3.00		Pit terminated	at 3.00m.			
Pi	t Dim	ension (m)			Pit Sta	bility:			Water Strikes:			
Width		0.45	Trial pit	t stable du				Trial pit dry.				
Length	:	1.50	1									
Depth		3.00	1									

Sol	Ithe	rn Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP2	
			w.stconsult.co	uk tel:01604 5000.			06/2020	J14496	8T Tracked	Sheet 1 of 2	
Project Name: Old Loom Mill, Hail		sham		Rema	Remarks:		dinates:	Level (m AOD): 7.80	Logger:		
.ocation: E		Ersham Road, Hails	sham, E	ast Sussex			akage Test Pit.		e survey drawing.		
Client: Aitco		Aitco Ltd			2. Gru	unu iev	er interpolateu i	rom supplied sit	e survey urawing.		
Sai Depth (m)	nples an Type	d Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des	scription		
1.00 2.00	HP	UCS(kPa)=180.00	7.5	(0.30) (0.40)		0.30	(TOPSOIL). Very stiff, bro with frequen gravel. Stiff, grey and	y stiff, brown, desiccated, slightly sandy, silty CLAY, n frequent fine to medium angular black ironstone			
2.90	ΗP	UCS(kPa)=200.00	4.9			2.90	Pit terminated at 2.90m.				
Pit Dimension (m)		Pit Stability:					Water Strikes:				
Width		0.45	Trial pit	t stable du				Trial pit dry.			
Length		1.60									
Depth		2.90	1								

Southern Testing ST Consult					Start -	End Date:	Project ID:	Machine Type:	TP3			
www.southerntesting.co.uk tel:01342 333100 www.stconsult.co.uk tel:01604 500020						26/0	06/2020	J14496	8T Tracked	Sheet 1 of 1		
Project Name: Old Loom Mill, Ha			lsham		Pomo	arke:	Co-ord	linates:	Level (m AOD):	Logger:		
		Ersham Road, Hails		ast Sussex	1. BR	Remarks: 6.30 CL 1. BRE365 Soakage Test Pit. 2. Ground level interpolated from supplied site survey drawing.						
Sai	mples and	d Insitu Testing	Level	Thickness	Logond	Depth		Stratum Des	ariation			
Depth (m)	Туре	Results	(m AOD)	(m)	Legend	(m bgl)	Light grouich		very sandy, fine to o			
			6.1	(0.20)		0.20	angular, limes	stone GRAVEL (sul	obase).			
				(0.50)			Dark brown, very sandy CLAY, with frequent bricks and brick fragments, timber, plastic, plywood and rope (MADE GROUND).					
	HP	UCS(kPa)=120.00	5.6		<u> </u>	0.70	Firm to stiff li	ight grev and light	vellowish brown s	lightly		
						-	Firm to stiff, light grey and light yellowish brown, slightly CLAY.					
							[0.7-1.3m: In weste very silty CLAY]	rn third of pit - pocke	t of soft to firm, dark gro			
1.00	ΗP	UCS(kPa)=90.00				-				1		
					222							
						-						
1.50	HP	UCS(kPa)=200.00				-						
						-						
							-					
				(2.30)		-	[1.8-2.5m: Very silty	<u>y]</u>				
2.00	HP	UCS(kPa)=110.00				-				2		
				-		-						
						-						
						-						
						-						
						-						
				-		-						
						-						
			3.3			3.00		Pit terminated	at 3.00m.	3		
Pit Dimension (m)			Pit Sta	ability:			Water Strikes:]				
Width	:	0.45	Trial pit	t stable du	iring exc	avation		Trial pit dry.				
Length	:	1.40										
Depth		3.00										

Soι	Ithe	rn Testing	ST Co	nsult		Start -	End Date:	Project ID:	Machine Type:	TP4	
				stconsult.co.uk tel:01604 500020		, ,		J14496	8T Tracked	Sheet 1 of 1	
Project Name: Old Loom Mill, Hail		sham		Rema	dinates:			Level (m AOD): 5.70	Logger: CL		
ocation: Ersham Road, Hail		sham, East Sussex			1. BRE365 Soakage Test Pit.						
Client: Aitco Ltd				2. UIC	2. Ground level interpolated from supplied site survey drawing.						
Sar Depth (m)	nples an Type	d Insitu Testing Results	Level (m AOD)	Thickness (m)	Legend	Depth (m bgl)		Stratum Des	scription		
1.00	ΗP	UCS(kPa)=120.00	5.3	(0.40) (2.40)		(m bgi) 0.40	Brown, very silty, friable, very silty CLAY, with frequent rootlets (TOPSOIL). Firm to stiff, orange brown and light grey, plastic CLAY, with occasional polished fissure surfaces. [1.5-1.8m: Orange and brownish orange, blocky fissured, CLAY, with fine to medium, extremely weak, mudstone gravel]				
2.00	ΗP	UCS(kPa)=250.00						enses of dark brown/b	brown below approx. 2. lack, fine to medium, ar		
2.80	ΗP	UCS(kPa)=220.00	2.9			2.80		Pit terminated	at 2.80m.		
									M		
Pit Dimension (m)			Trial ait	t stable du	Pit Sta			Trial nit day	Water Strikes:		
Width: Length		0.45		t stable du	ing exc	avation		Trial pit dry.			
rengtu	:	2.80									

Trial Pit TP2 (Pit - full of water)

Trial Pit TP2 (Spoil)

Trial Pit TP4 (Pit)

Trial Pit TP4 (Spoil)

APPENDIX B

Field Sampling and In-Situ Test Methods and Results

Soil and Rock Descriptions

All soil and rock descriptions are in general accordance with BS5930 Ref [1].

Anthropogenic soils ('made ground' or 'fill') describe materials which have been placed by man and can be divided into those composed of reworked natural soils and those composed of or containing man-made materials. 'Fill' is used to describe material placed in a controlled manner and 'made ground' is used to describe materials placed without strict engineering control.

The classification of materials such as topsoil is based on visual description only and should not be interpreted to mean that the material complies with criteria used in BS 3882 Ref [4].

Chalk descriptions are based on CIRIA C574 Ref [5] and Mortimore Ref [6].

The geology code is only provided on logs where a positive identification of the sample strata has been made.

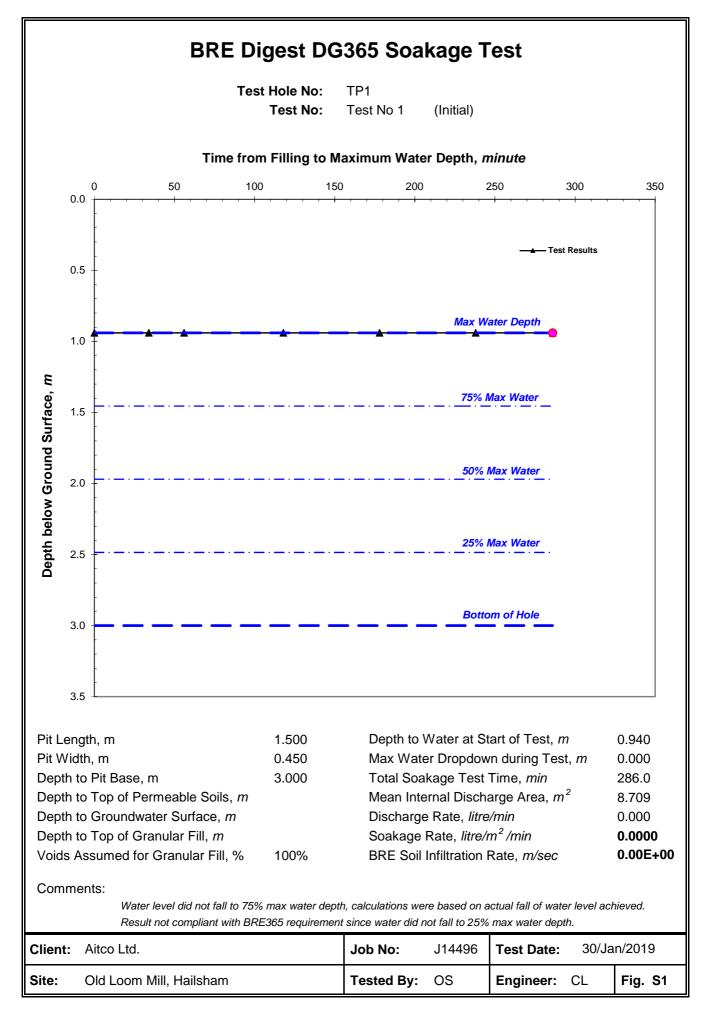
Trial Pits and Trenches

Trial pits and trenches are unsupported excavations, mechanically excavated by machine to the required depth to enable visual examination, in situ testing and sampling as required from outside the excavation.

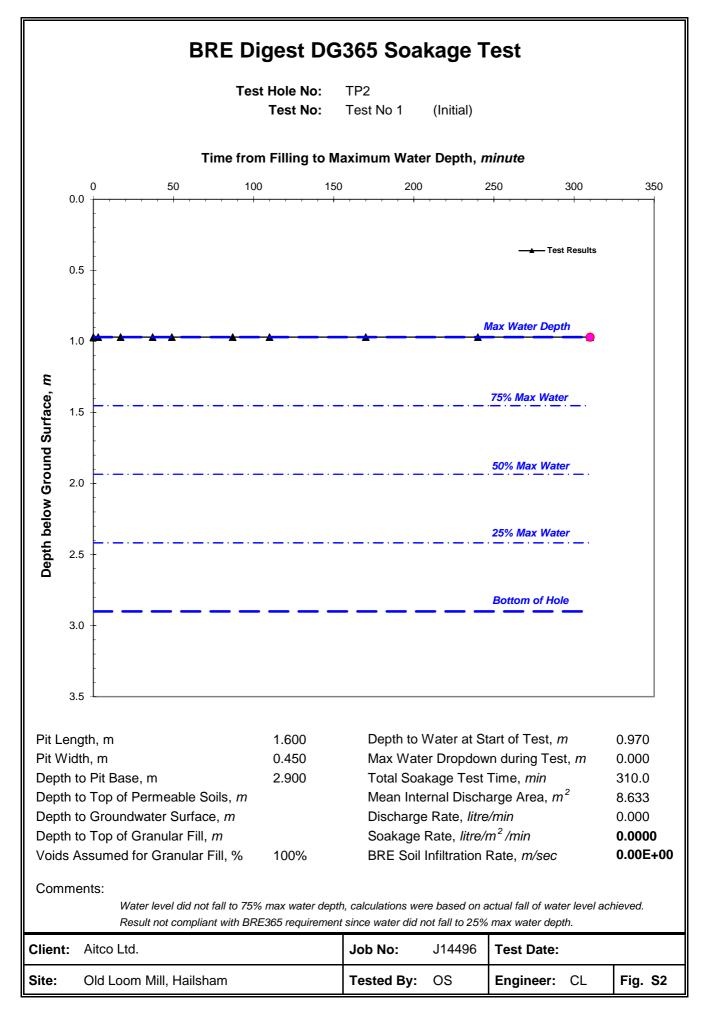
Hand Penetrometer Test

The handheld soil penetrometer consists of a spring loaded and calibrated plunger which is forced into cohesive soil. A reading of unconfined compression strength (equal to twice cohesion) is given on a calibrated scale. The average of a set of three readings shall be recorded.

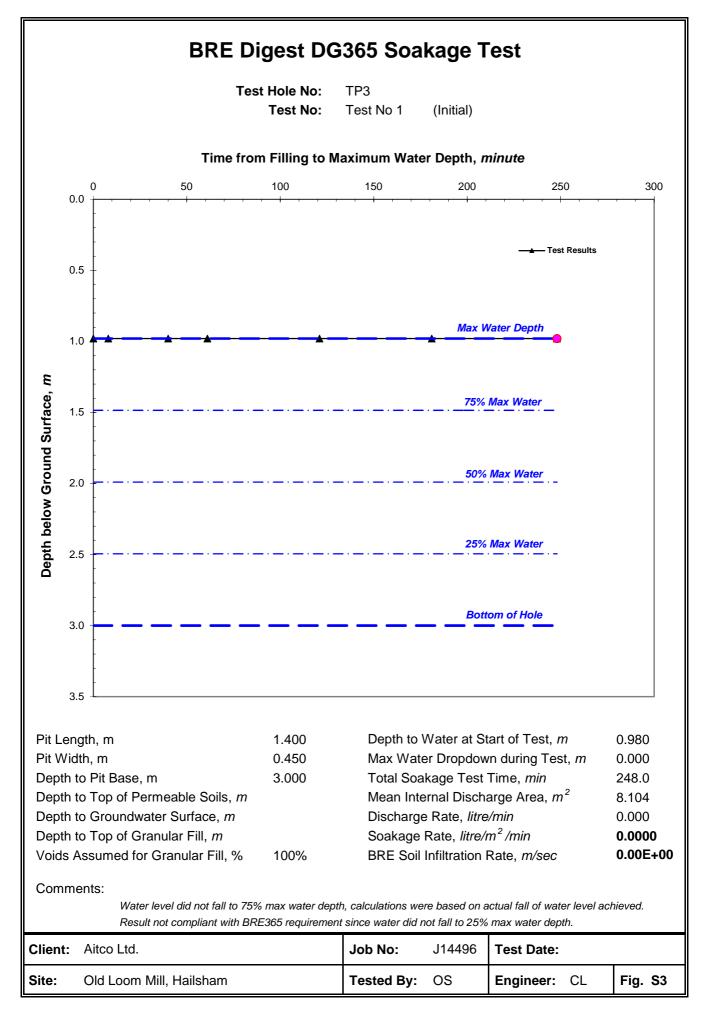
In common with other hand methods of strength assessment it does not give an accurate indication of bearing capacity in stiff or fissured soils, because of the small test area.

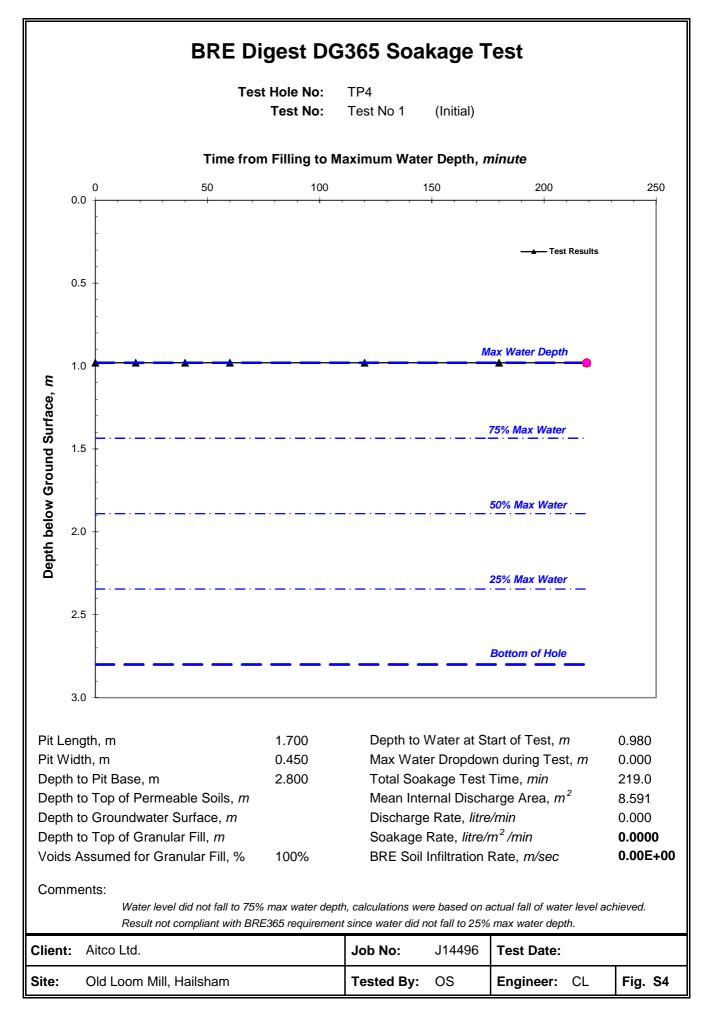

Soakage Tests (after BRE DG365 2016)

The BRE DG365 Ref [3] paper on soakaway design allows for the design of trench soakaways as well as traditional square and circular soakaways.


The test to measure the soil infiltration rate is carried out in pits which are excavated to the full depth of the proposed soakaway. The trial pits are filled and allowed to drain to empty or near empty, three times, on the same day or on consecutive days. Water levels are recorded against time. Where the sides are unstable the pit should be filled with granular material to provide stability during the test.

Calculated soakage rates are expressed as I/m²/minute, which is a convenient rate to use. The BRE use a unit of m/sec, which is the value in I/m²/minute divided by 60,000.





APPENDIX C

Site Photographs

Photo 3 – View from the centre-W (looking E)

Photo 4 – View from the SW (looking N)

Photo 7 – View of the buildings in the centre-E (looking SSW)

Photo 8 – View of the buildings in the centre-E (looking WNW)

Head Office East Grinstead Tel: 01342 333100 enquiries@southerntesting.co.uk

ST Consult Thames Valley Hannington Tel: 01635.800.950 hannington@stconsult.co.uk

